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Abstract—Scientists in different fields, such as high energy
physics, earth science, and astronomy are developing large-scale
workflow applications. In many use cases, scientists need to run
a set of interrelated but independent workflows (i.e., workflow
ensembles) for the entire scientific analysis. As a workflow
ensemble usually contains many sub-workflows in each of which
hundreds or thousands of jobs exist with precedence constraints,
the execution of such a workflow ensemble makes a great concern
with cost even using elastic and pay-as-you-go cloud resources.
In this paper, we address two main challenges in executing
large-scale workflow ensembles in public clouds with both cost
and deadline constraints: (1) execution coordination, and (2)
resource provisioning. To this end, we develop a new pulling-
based workflow execution system with a profiling-based resource
provisioning strategy. The idea is homogeneity in both scientific
workflows and cloud resources can be exploited to remove
scheduling overhead (in execution coordination) and to minimize
cost meeting deadline. Our results show that our solution system
can achieve 80% speed-up, by removing scheduling overhead,
compared to the well-known Pegasus workflow management
system when running scientific workflow ensembles. Besides, our
evaluation using Montage (an astronomical image mosaic engine)
workflow ensembles on around 1000-core Amazon EC2 clusters
has demonstrated the efficacy of our resource provisioning
strategy in terms of cost effectiveness within deadline.

Keywords—workflow ensemble, cloud computing, parallel com-
puting, resource provisioning.

I. INTRODUCTION

Many applications in science and engineering are increas-
ingly formed as workflows with many precedence-constrained
jobs, e.g., Montage [1], LIGO [2], and CyberShake [3]. Scien-
tists need to run these workflows with different parameters
repeatedly, or use a combination of different workflows to
achieve an ultimate goal. We use the term workflow ensemble
to represent an entire scientific analysis as a set of interrelated
but independent workflow applications. In modern scientific
computing applications, a single scientific workflow often
becomes very large in terms of the number of constituting jobs
and input data size, which is already a challenge in resource
provisioning and scheduling. The situation is further compli-
cated by the number of workflows in a workflow ensemble. For
example, an ensemble of 200 6.0 degree Montage workflows
spawns over 1.7 million jobs and deals with approximately 7
TB of data. Thus, the efficient execution of a workflow ensem-
ble with multiple workflows is of great practical importance.

While there exist several widely used workflow manage-
ment systems, designed with grids as the target execution
environment, including Condor DAGMan[4], Pegasus [5], and
Kepler [6], researchers begin to develop/port workflow man-
agement systems with public clouds (e.g., Polyphony [7] and
our own DEWE [8]) to take advantage particularly of the
elasticity and pay-as-you-go pricing of the cloud. Although all
these systems can run on public clouds, their efficacy is limited
due to coordination/scheduling overhead and cost efficiency
when executing large-scale workflow ensembles in particular.

To this end, we develop DEWE v21—a major overhaul
of our preliminary version of DEWE (or simply DEWE v1)
[8]—and design a profiling-based resource provisioning strat-
egy. Our solution system, DEWE v2 adopts a pulling-based
approach that removes scheduling overhead by exploiting the
homogeneity in both scientific workflows and cloud resources.
In particular, many scientific workflows feature a large number
of nearly identical tasks in terms of their computation and data
requirements making the necessity/effectiveness of schedul-
ing less appealing. Our profiling-based resource provisioning
strategy, incorporated into DEWE v2, further leverages the
exploitation of the abundance of homogeneous resources in
clouds in addition to the task homogeneity. The specific
contributions of this paper are:

• We demonstrate that the pulling approach has better
performance over the scheduling approach in execut-
ing large scale workflow ensembles in clouds.

• We propose a profiling-based strategy to provision
computing resources in public clouds to meet both
cost and deadline constraints.

• We demonstrate that incremental job submission effec-
tively shapes resource utilization pattern, thus achieve
better resource utilization than batch submission.

We have extensively evaluated DEWE v2 using Montage
(an astronomical image mosaic engine, Figure 1) [1] workflow
ensembles with varying sizes and different configurations of
Amazon EC2 clusters. In particularly, our large-scale exper-
iments have been conducted using up to 200 6.0 degree
Montage workflows in four Amazon EC2 clusters with dif-
ferent instance types (c3.8xlarge, r3.8xlarge and i2.8xlarge)
consisting of up to 1,280 vCPUs.

1The source code is available from https://github.com/qyjohn/DEWE.v2.



Fig. 1: The structure of the Montage workflow represented by
directed acyclic graph (DAG). Vertices/nodes represent tasks
and edges represent precedence constraints due primarily to
data dependencies.

Our evaluation has been carried out in comparison with
Pegasus since DEWE v1 is only capable of running a single
workflow at a time. As compared to Pegasus, DEWE v2
can achieve 80% speed-up when running multiple scientific
workflows in parallel with the same cluster configuration. The
proposed resource provisioning strategy has been incorporated
into DEWE v2; and, it clearly demonstrates its capability to
identify the most appropriate number of resources to be rented
considering both cost and deadline constraints.

The rest of this paper is organized as follows. Section II
provides a motivational example focusing on the two main
challenges we address in this study, execution coordination
and resource provisioning. Section III presents our solution
system, DEWE v2 followed by our profiling-based resource
provisioning strategy in Section IV. In Section V, we evaluate
the performance of DEWE v2, using Pegasus as a comparison,
and the efficacy of our profiling-based resource provisioning
strategy incorporated into DEWE v2. Section VI reviews
related work followed by our conclusions in Section VII.

II. MOTIVATION

In general, there are two approaches to design and imple-
ment a workflow management system. The first approach em-
phasizes scheduling where the master node maintains the state
of all participating worker nodes, assigns jobs to worker nodes
using various resource scheduling algorithms, as well as stages
necessary data files to the worker nodes for job execution. Most
existing workflow management systems, from the ‘grid era’,
adopt the scheduling approach, including Condor DAGMan,
Pegasus, and Kepler. The second approach emphasizes a state-
less design where the master node publishes all pending jobs
to a queue, and a number of un-managed worker nodes pull the
job queue and compete for jobs to execute. The ever-increasing
scale of scientific workflows and the availability of abundant
homogeneous cloud resources increase the need for cloud-
native workflow management systems that cost effectively
provision resources and enable the execution of large-scale
workflow ensembles with little scheduling overhead.

To motivate the need for pulling-based workflow execution
and the possibility of profiling-based resource provisioning,
we run a 6.0 degree Montage workflow on four m3.2xlarge
instances.A 6.0 degree Montage workflow creates a 6-by-6
degree square mosaic centered at a particular region of the
sky (e.g., M16). The number of jobs and input data files
increases with the number of degrees of the mosaic. A 6.0
degree Montage workflow contains 8,586 jobs, 1,444 input
files with a total size of 4.0 GB, and 22,850 intermediate
files with a total size of 35 GB. The majority of these 8,586
jobs are copies of a few short-running jobs (mProjectPP,
mDiffFit and mBackground).

Figure 1 describes the structure of the Montage work-
flow. The progress of the workflow has a three-stage pattern
(see Figure 2). During the first stage, a large number of
mProjectPP jobs run in parallel, followed by a large number
of mDiffFit jobs running in parallel. During the second
stage, two jobs mConcatFit and mBgModel run one after
another, during which no other jobs are eligible to run. In this
paper, we consider mConcatFit and mBgModel as blocking
jobs because they block the execution of other jobs. During
the third stage, a large number of mBackground jobs run
in parallel, followed by a small number of mImgTbl, mAdd,
mShrink, and mJpeg jobs.

As shown in Figure 2, the mProjectPP, mDiffFit
and mBackground jobs are small jobs with very short
execution time within the range of a few seconds. However,
they consume and produce a large number of intermediate data
files of similar size and number. Considering the large number
of such jobs with many intermediate data files of similar size
and number, the decision making of any workflow schedul-
ing algorithm is much complicated, resulting in a significant
amount of scheduling overhead. Note that the second instance
(the second set of rows) in Figure 2 also acts as the coordinator
node in which the initial data resides; hence, significantly less
data staging overheads indicated by gaps (short white bars).

Furthermore, the execution time of the second stage is
approximately 40% of the makespan. During this stage, among
all the available computing resources only one CPU core is
being utilized. When the cluster is larger, more computing
resources are being wasted during this stage. In a Mon-
tage workflow ensemble, resource under-utilization can be
worse due to the lack of coordination between individual
sub-workflows. Therefore, the Montage workflow ensemble
represents a scheduling dilemma requiring trade-offs between
cost and performance.

In public clouds like Amazon EC2, a homogeneous en-
vironment can be created by launching instances with the
same instance type in the same availability zone. This is
contrast to the computing resources, in a grid environment,
that are considered as heterogeneous; and thus, it is necessary
to schedule critical jobs to worker nodes with more processing
power, and to avoid large data transfer over connections with
small bandwidth. The capability and ease of constructing a
homogeneous cluster in clouds brings new opportunities in
optimizing execution coordination and resource provisioning,
which was often not explicitly considered in existing workflow
management systems.



Fig. 2: Detailed visualization of a 6.0 degree Montage workflow running 4 m3.2xlarge instances using DEWE v1. Four sets of 8
rows indicate four EC2 instances, each of which has 8 vCPUs. The horizontal axis represents time in seconds, while the vertical
axis represents vCPU slots in the cluster. For each worker node, the graph shows the IP address of the worker node, the time
spent on job execution (compute time) and the time spent on data staging (communication time) for each vCPU slot.

III. DESIGN AND IMPLEMENTATION OF DEWE V2

In this section, we begin the description of DEWE v2
by discussing our design philosophy. We then describe the
architecture of DEWE v2 followed by its main components.
DEWE v2 shares some fundamental design concepts with
DEWE v1; hence the name.

A. Design Philosophy (Scheduling vs. Pulling)

DEWE v2 adopts the pulling approach with the explicit
consideration of public clouds, more precisely the availability
of abundant tightly coupled homogeneous resources. In par-
ticular, with public clouds like Amazon EC2, a homogeneous
environment can be achieved by launching all the worker
nodes with the same instance type in the same placement
group. For critical jobs (i.e., jobs along the critical path of
workflow), the computation cost remains the same regardless
of the worker node they run on. Furthermore, data transfer
between worker nodes can be replaced with a shared file
system such as NFS. With a large scale workflow ensemble,
the number and size of the input files overwhelm the memory
available on the worker nodes. The result is the communication
cost becomes the time needed to read the input files from the
shared file system, which is statistically the same regardless
of the worker node. In this case, the pulling approach has
advantages over the scheduling approach because it avoids the
scheduling overhead.

B. System Architecture

DEWE v2 consists of three main components: a master
daemon, a worker daemon, and a workflow submission ap-
plication (Figure 3). In a cluster environment, one of the
nodes runs the master demon, which can optionally run the
worker daemon at the same time. All other nodes run the
worker daemon. Using the workflow submission application,

scientists/users can submit workflows to the master daemon
from any nodes at any time. Figure 3 shows the architecture
design of DEWE v2.

The master daemon only manages the progress of the
workflow, and publishes jobs that are eligible to run to a
message queue. It has no knowledge about the worker nodes,
but assumes that the worker nodes are homogeneous in terms
of computing capability and communication bandwidth.

On the basis of “first come, first served”, the worker nodes
actively pull the message queue for jobs to execute. When
the job is successfully executed, the worker node sends an
acknowledgment message to the master daemon. Based on the
acknowledgment messages from the worker nodes, the master
daemon publishes new jobs that are eligible to run to the
message queue.

A POSIX-compliant shared file system is used to facilitate
the data sharing between worker nodes. When an output file
is generated by a job on a worker node, it is immediately
accessible from other worker nodes and can be used as inputs
files for other jobs. This shared file system can be provided by
either a centralized storage server (such as a NAS device) or a
distributed storage system (such as GlusterFS). We assume that
all worker nodes have equal access to the shared file system. A
workflow is encapsulated in a folder on the shared file system,
including the DAG file, the executable binaries, as well as the
input and output files.

To increase the robustness of the system, a timeout mech-
anism is added to the DAG management module in the master
daemon. A job can have a user-defined timeout value or a
system-wide default timeout value. If a job has been checked
out from the message queue for execution but the correspond-
ing acknowledgment is not received by the master daemon
within the timeout setting, the master daemon publishes the



Fig. 3: The architecture of DEWE v2.

job to the message queue again. With this timeout approach,
any worker node can fail at any time and the failed jobs will be
automatically resubmitted to the message queue for execution
by other worker nodes when the timeout occurs.

The master daemon is capable of managing multiple work-
flows concurrently. When precedence dependencies are met,
jobs in different workflows are published to the same message
queue for execution. Therefore, multiple workflows can be
executed in parallel on the same cluster.

As we can see, DEWE v2 significantly simplifies the
workflow execution process. There is no scheduling at any
stage during the execution of the workflow. The stateless
design of the worker node allows the cluster to scale in or
scale out according to the actual workload requirements.

C. Implementation of the Master Daemon

At the core of DEWE v2 is a message queue system based
on RabbitMQ. We use three separate topics in the message
queue for workflow submission, job dispatching, and job
acknowledgment. When the workflow submission application
submits a workflow, meta data about the workflow (the name
of the workflow, as well as the path to the related folder on
the shared file system) is published to the workflow submission
topic. The master daemon pulls meta data about the workflow
from the workflow submission topic, then parses the DAG
file and stores the job dependencies information into a data
structure. If a job has no pending dependency precedence
requirements, the master daemon publishes meta data about
the job (the location of the binary executable with input and
output parameters) to the job dispatching topic.

When a job is checked out by a worker node for execution,
the worker node sends a message to the job acknowledgment
topic indicating the job is now running. When a job is
successfully executed on a worker node, the worker node sends
another message to the job acknowledgment topic indicating
the job is now completed. The master daemon pulls the job
acknowledgment topic for such messages. If the message
indicates a job is running, the master daemon marks the job as
“running” so that the job is no longer visible to other worker
nodes. If the message indicates a job is completed, the master
daemon marks the job as “completed” and updates the status of
all pending jobs that depend on the completed job. When a job

has no pending precedence requirements it becomes eligible to
run. Then the master daemon publishes meta data about jobs
that are eligible to run to the job dispatching topic, where they
are pulled by the worker nodes for execution.

The master daemon periodically examines the status of all
“running” jobs. If a job is checked out by a worker node for
execution but the corresponding acknowledgment indicating
the job is completed is not received within its timeout setting, a
timeout event is triggered. The master daemon then resubmits
meta data about the job to the job dispatching topic so that
other worker nodes can execute the job again.

D. Implementation of the Worker Daemon

The worker daemon has a stateless design. The only
knowledge it has about the whole workflow execution system
is the address of the message queue. It has no knowledge about
the master node, other worker nodes in the system, or the jobs
that have been executed on the worker node itself. It reads input
files from, and writes output files to, the shared file system,
just like using a local file system.

The worker daemon pulls the job dispatching topic for jobs
to execute. Upon receiving a job from the message queue, the
worker daemon sends a message to the job acknowledgment
topic indicating the job is now running. A separate thread is
launched by the worker daemon to handle each individual job.
Upon completion of the job, the worker daemon sends another
message to the job acknowledgment topic indicating the job is
now completed. The thread associated with a job is terminated
when the job is completed.

To avoid resource competition among concurrently running
jobs, we put an upper limit on the number of concurrent job
execution threads. The worker daemon stops pulling the job
dispatching topic when the number of concurrent job execution
threads equals to the number of CPUs available on the worker
node. However, the worker daemon does not bind a job to
a particular CPU. If a job is implemented in a way that can
leverage multiple CPUs (for example, OpenMP), the desired
behavior is preserved. This feature can significantly speed up
the execution of a workflow when the blocking jobs (e.g.,
mConcatFit and mBgModel in Montage workflow) are
implemented as parallel code.

E. Implementation of the Workflow Submission Application

The workflow submission application accepts two parame-
ters from the user—workflow name and the path to the related
folder on the shared file system. The workflow submission
application publishes this information to the workflow submis-
sion topic in the message queue system, where it is checked
out by the master daemon for further processing.

IV. PROFILING-BASED RESOURCE PROVISIONING

In this section, we propose a profiling-based strategy
to provision computing resources for large scale scientific
workflow ensembles with both cost and deadline constraints.
As many scientific workflows show homogeneity particularly
in the sense that a majority of tasks in a workflow have
similar resource consumption pattern, we begin with small
scale experiments to profile the resource consumption patterns
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Fig. 4: Resource consumption patterns of ten 6.0 degree Montage workflows running on a single node cluster with DEWE v2.

of the workflow ensemble. Based on the small scale testing
results we derive the performance index of a worker node.
Then we use the performance index to determine the number of
worker nodes needed for the actual large scale experiments. To
simplify our discussions, all the tests presented in this section
are carried out with batch submission.

A. Profiling

To come up with a resource provisioning strategy for
executing large scale scientific workflow ensembles in public
clouds, we use both single-node tests and multi-node tests to
profile the resource consumption pattern of multiple workflows
running in parallel. In the single-node tests, we run up to ten
6.0 degree Montage workflows on a single-node cluster with
DEWE v2. The largest workload contains 85,860 jobs, 14,440
input files with a total size of 40 GB, and 228,500 intermediate
files with a total size of 350 GB. In the meantime, our multi-
node tests deal with 20 6.0 degree Montage workflows with
varying numbers of nodes.

We use the c3.8xlarge, r3.8xlarge, and i2.8xlarge instances
on AWS EC2 in our profiling. Table I lists the specifications
of the selected instance types. On all of the selected instance
types, the storage devices are SSD-backed instance store
volumes (storage from disks that are physically attached to
the host computer). To achieve the best disk I/O performance,
we combine all the instance store volumes available on the
instance in a RAID 0 configuration. All the workflow related
disk I/O operations are configured to occur on the RAID 0
device. The file system being used on all worker nodes is ext4.
In the multi-node tests, all nodes share their storage using
NFS. While all three instance types have similar CPU and
memory performance, there exists significant difference in the
disk I/O performance of the RAID 0 device, as shown in Table
II. During the experiments we run a background monitoring
process on all worker nodes to collect operating system level
metrics every 3 seconds using mpstat and iostat. The metrics
collected include the number of concurrent threads, CPU
utilization rate, I/O operations per second, as well as disk read
and disk write throughputs. This profiling technique allows us
to understand and compare the actual resource consumption
during the execution of a workflow under various conditions
for example with different workflow management system or
using different cluster configurations.

Figure 4 shows the resource consumption pattern of ten 6.0
degree Montage workflows running on a single-node cluster

TABLE I: EC2 Instance Types

Model vCPU Memory
(GB)

Storage
(GB)

Network
(Gbps)

Price
(USD/hour)

c3.8xlarge 32 60 2 x 320 10 1.68
r3.8xlarge 32 244 2 x 320 10 2.80
i2.8xlarge 32 244 8 x 800 10 6.82

TABLE II: Disk I/O Capacity of EC2 Instance Types

Model Sequential
Read (MB/s)

Sequential
Write (MB/s)

Random
Read (MB/s)

Random
Write (MB/s)

c3.8xlarge 250 800 400 600
r3.8xlarge 350 1000 700 800
i2.8xlarge 2200 3800 1800 3600

with DEWE v2. During the first stage, the workflow is CPU
intensive, as evidenced by the 100% CPU utilization rate on
all three instance types (Figure 4a). If we look at the disk
write operations alone (Figure 4b), we would think that the
workflow is I/O intensive during this stage. However, this
stage takes approximately the same amount of time on all
three instance types, regardless of the significant difference
in their write throughput. This indicates that CPU is the real
bottleneck during this stage. The operating system caches the
disk writes and flushes them to the disk in batches, resulting
in the intermittent disk writes at full capacity. During the
second stage, the workflow is neither CPU intensive nor I/O
intensive, as evidenced by the low CPU utilization rate and
zero disk writes. The progress of the workflow is controlled by
the single-thread mConcatFit and mBgModel jobs. During
the third stage, the workflow is I/O intensive. The i2.8xlarge
instance, with the highest I/O capacity, finishes executing this
stage first, following by the r3.8xlarge and the c3.8xlarge
instances, according to their I/O capacities.

Figure 5 shows the impact of workload and cluster size
on the performance of the cluster. On the single-node cluster,
the size of the cluster remains the same. As the number
of workflows increases, the execution time increases linearly
(Figure 5a). On the multi-node cluster, the size of the workload
remains the same, i.e., 20 6.0 degree Montage workflows. As
the number of worker nodes increases, the execution time
decreases linearly (Figure 5b); however, the slope is quite
smooth being flattened out as the number of worker nodes
increases.
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Fig. 5: The impact of workload and cluster size on the performance of the cluster. On the single-node cluster, we run up to 10
6.0 degree Montage workflows. On the multi-node clusters, we run 20 6.0 degree Montage workflows regardless cluster size.

B. Node Performance Index

The node performance index P of the worker nodes in a
multi-node cluster can be defined as the execution speed of
the workflow on a single node (or workflow per second per
node). More formally,

P =
W

N ∗ T
(1)

where W is the number of workflows running on the cluster,
N is the number of worker nodes in the cluster, and T is
the execution time needed for N workflows. A simple way
to read this is how much of a workflow can be completed by
one worker node in one second. As shown in Figure 5c, as the
number of worker nodes increases, the node performance index
decreases. The phenomenon is commonly observed in clusters,
and is referred to as clustering performance degradation. In
our test case, the observed clustering performance degradation
gradually converges when the number of worker nodes is
greater than 4. Based on Figure 5c, we estimate that the
node performance indexes for large scale clusters are 0.0015,
0.0024, and 0.0026 for clusters with c3.8xlarge, r3.8xlarge,
and i2.8xlarge instance types.

Based on Equation 1, we can estimate the number of
worker nodes needed to execute a large scale scientific work-
flow ensemble with deadline constraints using the following
formula:

N =
W

P ∗ T
(2)

where N is the desired number of worker nodes in the cluster.

V. EVALUATION

In this section, we evaluate the performance of DEWE v2
in terms of execution coordination and resource provisioning.

A. Performance of DEWE v2

The evaluation on the performance of DEWE v2 is con-
ducted in comparison with Pegasus, a well-known scheduling-
based workflow management system using up to five 6.0
degree Montage workflows. We choose Pegasus because (a)
the Montage workflow was previously thoroughly studies in
Pegasus; and (b) the Pegasus team provided a shared AMI on

AWS with the Montage workflow as an example. It should
be mentioned that Pegasus is only responsible for workflow
planning, and it uses DAGMan for job scheduling and Condor
for job execution. In this sense, DEWE v2 is the equivalent of
Pegasus + DAGMan + Condor. Within the scope of this paper,
the term “Pegasus” actually refers to a system including Pega-
sus, DAGMan and Condor. We verify that the results obtained
from DEWE v2 and Pegasus are identical by comparing the
size and MD5 check sum of the final output images produced
by job mJpeg (see Figure 1). The experiments are carried out
on AWS EC2 in its us-east-1 region. The instance type being
used is c3.8xlarge. The storage being used is the instance-
store SSD volumes with RAID 0 configuration. To eliminate
the impact of network latency, the required input files are
downloaded to the storage device before the experiments.

1) Scheduling vs Pulling: Figure 6 shows the resource
consumption patterns of one 6.0 degree Montage workflow
running on a single-node cluster with DEWE v2 and Pegasus.
Although the c3.8xlarge instance has 32 vCPU, the maximum
number of concurrent threads observed is 25 for DEWE v2
and 20 for Pegasus. The maximum CPU utilization observed
is 100% for DEWE v2 and 80% for Pegasus. This indicates
that DEWE v2 is more efficient in utilizing CPU resources. The
observed disk write operations for Pegasus are much more than
DEWE v2, indicating that Pegasus carries out more disk I/O
activities than DEWE v2. As a result, the average makespan
for DEWE v2 is 600 seconds whereas that for Pegasus is 1240
seconds, which is significantly longer.

Figure 7 shows the resource consumption of multiple 6.0
degree Montage workflows running on a single node cluster
with DEWE v2 and Pegasus. The instance being used is
c3.8xlarge on AWS EC2 in the us-east-1 region. A desired
number of workflows are submitted to the workflow man-
agement system in one batch. The required input files are
downloaded to the storage devices on the instance before the
experiments. Total execution time (Figure 7a) refers to the time
needed to finish the execution of the workflows, regardless
of the actual resource utilization rate on the worker nodes.
When the number of workflows increases, the total execution
time increases linearly. Total CPU time (Figure 7b) refers to
the actual CPU time spent on job execution activities, which
is calculated by integrating the actual CPU utilization rate
over the entire workflow execution period on all CPUs. Total
disk writes (Figure 7c) refers to the amount of data being
written to the file system, which is calculated by integrating the
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Fig. 6: Resource consumption patterns of one 6.0 degree Montage workflow on a single c3.8xlarge instance.
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Fig. 7: Resource consumption of multiple 6.0 degree Montage workflow on a single c3.8xlarge instance.
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Fig. 8: Impact of submission intervals on execution time.

actual disk write throughput over the entire workflow execution
period. When the number of workflows increases, both total
CPU time and total disk writes increase linearly. In general,
Pegasus consumes a lot more computing resource (such as
CPU time and disk writes) than DEWE v2, resulting in much
longer execution time. For example, the execution time of five
6.0 degree Montage workflows being run with DEWE v2 is
approximately the same as the execution time of one 6.0 degree
Montage workflow being run with Pegasus. In other words,
DEWE v2 can achieve 80% speed-up when running multiple
workflows in parallel with the same cluster configuration.

2) Workflow Submission Intervals: A 6.0 degree Montage
workflow demands different computing resources in different
stages. When executing a large scale workflow ensemble with
many workflows on the same cluster, it is possible to optimize
resource utilization by controlling the workflow submission
intervals so that different workflows in the workflow ensemble
do not demand the same computing resource at the same time.
In this test, we run a workflow ensemble with five 6.0 degree
Montage workflows with DEWE v2 on a single-node cluster
with both the master daemon and worker daemon on the same
node. The test includes submitting all five workflows in one
batch (batch submission), or submitting the five workflows
one after another at fixed intervals (incremental submission).

Batch submission can be considered as a special case of
incremental submission where the submission interval is zero.
As shown in Figure 8, the time needed to execute all five
workflows decreases when the submission interval increases,
then increases again when the submission interval is greater
than 100 seconds. In this particular test case, 34% speed up can
be achieved by setting the submission interval to 100 seconds.

Figure 9 shows the resource consumption patterns of the
test workflow ensemble with five 6.0 degree Montage work-
flows running on a single node cluster with DEWE v2. Due to
space limits we only show results with workflow submission
intervals of 0, 50 and 100 seconds. As shown in Figure 9a,
when we increase the workflow submission interval, the CPU
utilization pattern in the system changes. When submission
interval is 0 second (batch submission), the CPU utilization
exhibits a clear three-stage pattern, with significant resource
under-utilization in the second stage. This is very similar to the
CPU utilization pattern in a single workflow. When submission
interval is 100 seconds, such three-stage pattern is no longer
obvious. This is because different types of jobs from different
workflows can be executed in parallel, resulting in an increase
in average CPU utilization across the whole execution time.
The same result is also observed in disk I/O activities, which
is reflected in both disk writes (Figure 9b) and disk reads
(Figure 9c). Due to the increase in resource utilization, shorter
execution time can be achieved with well-designed incremental
submission techniques. The investigation of more sophisticated
submission strategies is beyond the scope of this paper and we
plan to do this as our future work.

3) System Robustness: We carry out two tests to examine
the robustness of DEWE v2. In one test, we run one 6.0 degree
Montage workflow with DEWE v2 on a single-node cluster
with both the master daemon and worker daemon on the same
node. During the execution of the workflow, we introduce
interruptions to the system by killing the worker daemon and
then starting it again 5 seconds later. In the other test, we run
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Fig. 9: Resource consumption patterns of five 6.0 degree Montage workflows on a single c3.8xlarge instance with DEWE v2.

one 6.0 degree Montage workflow with DEWE v2 on a two-
node cluster with NFS as the shared file system. One of the
nodes has both the master daemon and the worker daemon,
while the other node has only the worker daemon. However,
at any time there is only one worker daemon running. During
the execution of the workflow, we introduce interruptions to
the system by killing the worker daemon on one node, then
starting the worker daemon on the other node 5 seconds later.

In both tests, interrupted jobs are automatically resubmitted
for execution after timeouts. DEWE v2 is capable of com-
pleting the execution of the workflow, regardless of number
of interruptions. When the interruptions are introduced during
the execution of non-blocking jobs, such as mProjectPP and
mDiffFit, the increase in makespan roughly equals to the
total duration of the interruptions. This is because DEWE v2
can resume execution of the workflow as soon as the worker
daemon restarts, without the need to wait for the timeout of the
interrupted jobs. When the interruptions are introduced during
the execution of blocking jobs, such as mConcatFit and
mBgModel, the increase in makespan roughly equals to the
sum of the timeout settings of the interrupted jobs. This is
because DEWE v2 must wait for the timeout of the interrupted
jobs to resume execution of the workflow.

DEWE v2’s capability of resuming workflow execution
after interruption of the worker daemon opens the door for
dynamic resource provisioning. During the execution of large
scale workflow ensembles, researchers can dynamically adjust
the number of worker nodes in a cluster to meet both deadline
and cost constraints. When there are a large number of non-
blocking jobs in the queue, more worker nodes can be added
to the cluster to speed up the execution. When there are a
limited number of blocking jobs in the queue, some worker
nodes can be removed from the cluster to reduce cost. Such
dynamic resource provisioning strategy might not be effective
for public clouds with a charge-by-hour model (such as AWS),
but can be useful for public clouds with a charge-by-minute
model (such as Google Compute Engine). In this paper, we
carry out all our experiments on AWS, therefore we are not
able to explore further on this topic.

B. Evaluation of Profiling-based Resource Provisioning

We use large scale experiments to evaluate our resource
provisioning strategy. The largest workflow ensemble includes
200 6.0 degree Montage workflows, which contains 1,717,200
jobs, 288,800 input files, and 4,570,000 intermediate files.
Approximately 7.0 TB data is written to the underlying storage
during the execution.

TABLE III: Cluster Configurations

Cluster Nodes vCPU Memory
(TB)

Storage
(TB)

Price
(USD/hr)

c3.8xlarge 40 1280 2.40 25.6 67.2
r3.8xlarge 25 800 6.10 16.0 70.0
i2.8xlarge 23 768 5.61 147.2 156.7
i2.8xlarge B 10 320 2.44 64.0 68.2

In order to meet both cost and deadline constraints, we
design our clusters with the goal to complete the largest
workload ensemble (W = 200) within an hour. This is because
users pay for EC2 instances by the hour, and any partial hour
usage will be charged as a full hour. The time constraint T
is set to 3300 seconds (55 minutes) because we would like to
have some flexibility in the execution time. Based on Equation
2, the estimated number of worker nodes are 40, 25, and 23
for c3.8xlarge, r3.8xlarge and i2.8xlarge instance types. An
additional cluster i2.8xlarge B with the i2.8xlarge instance type
and 10 nodes is also tested as a comparison. We use 10 nodes
for the i2.8xlarge B cluster because it has approximately the
same hourly price as the c3.8xlarge and r3.8xlarge clusters.
Table III summarizes the experimental setup.

In our previous experiments, we use NFS as the share
file system between worker nodes. This requires each and
every worker node to share its local storage via NFS, and
mount the NFS shares from other nodes, resulting in an N-to-
N mapping between worker nodes. As the size of the cluster
grows, the configuration of the cluster becomes increasingly
complex, resulting in unbalanced utilization. In the large scale
experiments, we use MooseFS (http://www.moosefs.org/) as
the shared file system between worker nodes. All the worker
nodes are configured to be a MooseFS trunk server. Using
cloud-init scripts, the worker nodes automatically join the
storage pool and mount the MooseFS file system when the
instances are being launched. Furthermore, the required input
files are copied to the shared file system before the experi-
ments. Therefore, the test results only include the execution
time of the workflow ensemble. As a distributed file system,
MooseFS has the option to store one file with multiple copies
on different storage devices. In order to save storage space,
each file has only one copy in our experiments. The worker
nodes mount the shared file system as a POSIX-compliant file
system. When executing a particular job, the worker daemon
has no knowledge about the actual location of the input and
output files. Although data locality can not be assumed in our
experiments, it is safe to assume that statistically all worker
nodes have equal access to the underlying shared file system.
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Fig. 10: Resource consumption patterns of 200 6.0 degree Montage workflows running on a 25-node r3.8xlarge cluster.
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Fig. 11: Evaluation of profiling-based resource provisioning strategy using large scale experiments.

Figure 10 shows the resource consumption pattern of 200
6.0 degree Montage workflows running on the r3.8xlarge
cluster. The cluster includes 25 worker nodes, but we only
present data from three worker nodes. As shown in the figure,
all three worker nodes have the same the resource consumption
patterns, which is similar to the resource consumption pattern
on a single-node cluster (Figure 4). This is also true for other
worker nodes not shown in the figure. This indicates that the
workload is evenly distributed across the cluster. The cluster
behaves in a way that is similar to a supercomputer.

Figure 11 shows the execution time, node performance
index, and price per workflow for workflow ensembles with
different number of 6.0 degree Montage workflows. For all
clusters, the execution time increases linearly as the number
of workflows in the workflow ensemble increases (Figure
11a). On clusters c3.8xlarge, r3.8xlarge and i2.8xlarge, the
workflow ensemble with 200 6.0 degree Montage workflows is
completed within 60 minutes, meeting the designed deadline
constrain. On cluster i2.8xlarge B, the workflow ensemble
with 200 6.0 degree Montage workflows takes 135 minutes
to complete, far exceeding the designed deadline constraint.

Figure 11b shows the node performance index for different
clusters. The i2.8xlarge B cluster has the highest node per-
formance index. This is because the cluster has the smallest
number of nodes, resulting in the highest resource utilization
rate. For clusters c3.8xlarge, r3.8xlarge and i2.8xlarge, the
node performance index grows when the workload ensemble
grows. When the number of workflows is small, the clusters are
not fully utilized. In this case, the observed node performance
index is lower than the designed node performance index.
When the number of workflows is large, the clusters become
fully utilized. In this case, the observed node performance
index is very close to the designed node performance index.

Figure 11c shows the average price of executing a single
workflow on different clusters under different workloads. For
clusters c3.8xlarge, r3.8xlarge and i2.8xlarge, all the tests
are completed in one hour. With the hourly pricing model,
the cost is the same for different workloads. As a result,
the price per workflow decreases as the workload increases.
This suggests that the size of the cluster should be carefully
designed based on the target workload to achieve the best price
performance. For cluster i2.8xlarge B, the price per workflow
fluctuates because the costs of running different workload are
different. However, for the designed workload with 200 6.0
degree Montage workflows, all three clusters designed with
the proposed resource provision model (c3.8xlarge, r3.8xlarge
and i2.8xlarge) achieve lower price per workflow than cluster
i2.8xlarge B, which is not designed with the proposed resource
provision model. This indicates that the proposed resource
provision strategy is effective in designing clusters to meet
both cost and deadline constraints.

VI. RELATED WORK

While there have been many efforts put on executing
scientific workflows, they are mostly focusing on scheduling
at small scale, with single workflow at a time or using
simulations. These efforts range from workflow management
systems, [5], and Kepler [6], [7], to scheduling and resource
allocation algorithms, [9], [10], [11], [12], [13], [14], [15].

As scientific workflows become increasingly large-scale
and complex, their distributed execution across multiple re-
sources is far beyond an average task. Coinciding with this
increase in scale and complexity have been efforts on de-
veloping workflow management systems, including Condor
DAGMan[4], Pegasus [5], and Kepler [6]. These frameworks
tend to be heavy-weight and are inaccessible to scientists who
lack dedicated hardware and support staff. Moreover, many



of these workflow management systems are designed for grid
environment and focus on providing independence from the
underlying execution environment.

Early pulling-bases systems such as Celery (http://
celery.readthedocs.org/) and Work Queue (http://ccl.cse.nd.
edu/software/workqueue/) require the end users to develop
an application for each and every workflow, which is not
convenient for large-scale scientific workflows. Apache Crunch
(https://crunch.apache.org) and Apache Falkon (http://falcon.
apache.org) are built around Apache Hadoop, and can only be
used to handle workflows running on top of Apache Hadoop.
AWS ElasticBeanstak environment tier2 and Windows Azure
worker role3 can pull jobs from a queue for execution, but the
end users still need to develop an application to handle prece-
dence requirements between different jobs and data staging
across multiple worker nodes.

Polyphony [7] was designed and developed with AWS as
the target execution environment, but the software is not ac-
cessible to the workflow researcher community. Furthermore,
Polyphony uses the AWS Simple Queue Service (SQS) as
the message queue, which is not intended for high perfor-
mance computing applications. The work in [10] deals with
scheduling scientific workflows across multiple geographically
distributed resource sites; however, the scale of workflows is
still limited to small, e.g., 255 tasks per workflow. All of
the above-mentioned workflow management systems exhibit
inefficiency in scheduling a large number of short-life jobs
across multiple worker nodes.

In order to execute large scale scientific workflow ensem-
bles in a cost effective way, the computing resources needed for
the execution must be carefully planned. Such planning usually
involves cost and performance trade-off for scientists. Most
of existing literature on resource provisioning for scientific
workflows use grid as the target execution environment [15],
[12], [14]. Malawski et al. [13] developed a set of algorithms
to increase the efficiency of executing scientific workflow en-
sembles on public clouds under cost and deadline constraints.
The authors evaluated the effectiveness of these algorithms in
simulated environments

VII. CONCLUSION

In this paper, we address two main challenges in executing
large-scale workflow ensembles in public clouds: (1) execu-
tion coordination, and (2) resource provisioning. We present
our solutions to these challenges with the development of
DEWE v2, a pulling-based workflow management system, and
its effective resource provisioning strategy. By adopting the
pulling approach in our solution system, we have demonstrated
that much of scheduling overhead when executing a large-
scale workflow ensemble particularly in public clouds can be
removed as a majority of tasks in scientific workflows often
exhibit homogeneity in their resource consumption pattern
and acquiring a large number of homogeneous public cloud
resources is easily possible. We compare the performance
of DEWE v2 with Pegasus showing DEWE v2 is capable

2http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/
using-features-managing-env-tiers.html.

3http://azure.microsoft.com/en-us/documentation/articles/
fundamentals-introduction-to-azure/

of achieving 80% speed-up. We have also demonstrated that
provisioning cloud resources using our profiling-based strategy
based on node performance index is very effective in terms of
both cost and deadline compliance.
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