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Abstract. In this paper, we present a serverless workflow execution sys-
tem (DEWE v31) with Function-as-a-Service (FaaS aka serverless com-
puting) as the target execution environment. DEWE v3 is designed to
address problems of (1) execution of large-scale scientific workflows and
(2) resource underutilization. At its core is our novel hybrid (FaaS and
dedicated/local clusters) job dispatching approach taking into account
resource consumption patterns of different phases of workflow execution.
In particular, the hybrid approach deals with the maximum execution
duration limit, memory limit, and storage space limit. DEWE v3 signif-
icantly reduces the efforts needed to execute large-scale scientific work-
flow applications on public clouds. We have evaluated DEWE v3 on both
AWS Lambda and Google Cloud Functions and demonstrate that FaaS
offers an ideal solution for scientific workflows with complex precedence
constraints. In our large-scale evaluations, the hybrid execution model
surpasses the performance of the traditional cluster execution model with
significantly less execution cost.
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1 Introduction

Scientists in different fields such as high energy physics and astronomy are devel-
oping large-scale applications in the form of workflows with many precedence-
constrained jobs, e.g., Montage [10], LIGO [1], and CyberShake [9]. Such sci-
entific workflows often become very complex in terms of the number of jobs,
the number and size of the input and output data, as well as the precedence
constraints between different jobs. Typically, scientists use a workflow manage-
ment system, such as Pegasus [6], Kepler [3] and Polyphony [18] to manage
the execution of their workflows. This requires scientists to setup and configure
clusters as the target execution environment, where the smallest unit of comput-
ing resource is either a physical server or a virtual machine. As the size of the
workflow grows, setting up and configuring a large-scale cluster often becomes a

1DEWE v3 is the third generation of our Distributed Elastic Workflow Execution
system for FaaS in public clouds. DEWE v3 only shares the name with the previous
two versions ([14] [11]), i.e., it is a complete rewriting.



challenging task, especially for researchers outside the field of high performance
computing (HPC). Also, it is common to observe serious resource underutiliza-
tion in large-scale clusters, primarily due to the complex precedence constraints
among the various jobs in the workflow. Researchers have always been looking for
new ways to (a) make it easier for researchers to execute large-scale workflows;
and (b) mitigate the resource underutilization issue.

In recent years, Function-as-a-Service (FaaS) such as AWS Lambda [4] and
Google Cloud Functions [8] started to gain attention in public clouds. FaaS offers
compute services that run code in response to events. The computing resource is
automatically managed by the public cloud service provider. The customer pays
for the actual amount of computing resource consumed. The dynamic resource
allocation mechanism and fine-grained pricing model seem to offer a potential
solution for the above-mentioned problems. However, it remains questionable
whether such transient execution environment with stringent resource limits is
capable of executing large-scale workflows with complex precedence constraints.

In this paper, we present DEWE v3 1, a workflow management and execution
system designed with FaaS as the target execution environment. The specific
contributions of this paper are:

– We demonstrate that FaaS offers an ideal execution environment for scientific
workflows with its dynamic resource allocation mechanism and find-grained
pricing model.

– We propose and validate a hybrid execution model that is effective in deal-
ing with the maximum execution duration limit, memory limit, and storage
space limit in the FaaS execution environment.

– We demonstrate that DEWE v3 on AWS Lambda is capable of executing
large-scale data-intensive scientific workflows. In our large-scale tests, the
hybrid execution model achieves shorter execution time with only 70% of the
execution cost, as compared with the traditional cluster execution model.

– DEWE v3 significantly simplifies the effort needed to execute large-scale
scientific workflows on public clouds.

We evaluate the performance of DEWE v3 on both AWS Lambda and Google
Cloud Functions with Montage scientific workflows 2. The hybrid execution en-
abled by DEWE v3 takes advantage of fine-grained pricing of FaaS and efficient
resource utilization of local clusters. The performance gain from the hybrid ex-
ecution becomes more apparent as workflows become larger scale.

The rest of this paper is organized as follows. Section 2 describes the motiva-
tion of this work. Section 3 describes the design and implementation of DEWE
v3. In Section 4, we evaluate the performance of DEWE v3 on both AWS Lambda
and Google Cloud Functions, using a set of Montage workflows as test cases. Sec-
tion 5 reviews related work, followed by our conclusions in Section 6.

1The source code is available from https://github.com/qyjohn/DEWE.v3.
2Montage (http://montage.ipac.caltech.edu/) is an astronomical image mosaic

engine that stitches sky images dealing with hundreds or even thousands of dependent
jobs. [10].



(a) Montage workflow. (b) Detailed visualization of a 6.0-degree Montage workflow
running on 4 m1.xlarge EC2 instances using DEWE v1.

Fig. 1: Execution of Montage Workflow.

2 Motivation

A workflow can be represented by a directed acyclic graph (DAG), where the
vertices represent the tasks and the edges represent the precedence constraints.
Figure 1a describes the structure of a Montage workflow. As the size and com-
plexity of a workflow increases, managing its execution on a cluster with multiple
nodes becomes a complex issue.

Most existing workflow management systems use clusters as the target ex-
ecution environment. A cluster consists of a set of computing resources called
worker nodes, where a worker node can be either a physical server or a virtual
machine. To execute a workflow, scientists often need to perform a set of admin-
istrative tasks including (a) provisioning the computing resources needed; (b)
setting up a cluster with an appropriate shared file system; (c) deploying the
workflow management system on a master node and the job execution agent on
the worker nodes; (d) monitoring the health status of all worker nodes; and (e)
de-provisioning the computing resources when the work is done. These adminis-
trative tasks can be quite difficult for scientists without dedicated hardware and
support staff. It is common that people with different levels of expertise come
up with clusters with significant performance differences with the same set of
hardware.

Because of the precedence constraints in a workflow, in certain phases during
the execution only a small number of jobs are eligible to run. The traditional
cluster approach presents a classical dilemma in workflow scheduling and execu-
tion – adding more computing resources to the execution environment can speed
up the execution of certain phases of a workflow, but also results in significant
resource underutilization during other phases of the same workflow. In recent
years, researchers have attempted to address the resource underutilization is-
sue by taking advantage of the elasticity of public clouds. This is achieved by
dynamically adding worker nodes to – or removing worker nodes from – the ex-
ecution environment base on the actual workload. However, such practice often
results in higher costs because of the one-hour minimum charge pricing model
commonly practiced by most public cloud service providers. Figure 1b visual-
izes the execution of a 6.0-degree Montage workflow running on a cluster with
4 m1.xlarge EC2 instances using the DEWE v1 workflow management system.



The progress of the Montage workflow has a four-stage pattern. During the sec-
ond stage only two single-thread jobs mConcatFit and mBgModel are running one
after another. It took 2025 seconds to complete the execution of the workflow,
with the total cost being 4 instance-hours. If we remove 3 worker nodes after the
first phase, then add 3 worker nodes back for the third phase, then the total cost
would become 7 instance-hours. As such, dynamically changing the number of
worker nodes in the workflow execution environment is not economically feasible
without a finer-grained pricing model.

The scientific computing community has long been searching for a work-
flow management system that is easy to setup and use. Ideally, scientists do
not need to know any details about the underlying computing resource such as
worker node and file system. The amount of computing resource available in the
workflow execution environment can be easily reconfigured. The execution cost
should be the actual amount of computing resource consumed, not including the
amount of computing resource that is wasted. However, this can not be easily
achieved when the smallest unit of computing resource is a physical server or a
virtual machine with an hourly pricing model.

The emergence of FaaS in public clouds provides a potential solution to
the above-mentioned problem. AWS introduced Lambda in 2014 and Google
introduced Cloud Functions in 2016. With FaaS, computing resource is auto-
matically provisioned by the service provider when the function is invoked, and
de-provisioned when the function finishes execution. Since the customer does
not have access to the execution environment running the code, FaaS is often
referred to as “serverless computing”. The customer pays for the actual amount
of computing resource consumed, which is represented by the size of the function
invocation environment times the duration of the invocation.

In light of the recent advancements in FaaS we develop DEWE v3, a workflow
management and execution system with FaaS as the target execution environ-
ment. With DEWE v3, scientists only need to provision a single server to run
the workflow management system. The jobs in the workflow are executed by
the FaaS function, whose computing resource is automatically provisioned and
de-provisioned by the service provider on demand. DEWE v3 uses object stor-
age service for data staging, including workflow definition, binaries, input and
output files. Researchers do not need to setup and configure a shared file system
that can be accessed from all worker nodes.

3 Design and Implementation

The DEWE v3 system (Figure 2) consists of three major components: the work-
flow management system, the FaaS job handler, and the local job handler. The
system utilizes object storage service for binary and data staging. Different com-
ponents in the system communicate with each other using a set of queues.
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Fig. 2: The architecture of DEWE v3.

3.1 Workflow Management System

The workflow management system runs on a server, which we call the manage-
ment node. The management node can be an EC2 instance, a GCE instance, or
a traditional server or virtual machine. The workflow management system reads
(1) the workflow definition (dag.xml) from object storage, parses the workflow
definition and stores job dependencies information into a data structure. If a job
has no pending dependency precedence requirements, the job is eligible to run
and is published to a job queue (2), from which it will be picked up by a job
handler for execution (3). When a job is successfully executed by a job handler,
the job handler sends an acknowledgement message to an ACK queue (4), in-
dicating the job is now completed. The workflow management system polls the
ACK queue for completed jobs (5) and updates the status of all pending jobs
that depend on the completed jobs.

The FaaS execution environment usually has a maximum execution dura-
tion limit for each invocation. The maximum execution duration limit for AWS
Lambda is 300 seconds. The maximum execution duration limit for Google Cloud
Functions is 540 seconds. In DEWE v3, we can define a set of long-running jobs
(long.xml) for the workflow. The execution time of a particular job can be esti-
mated from module testing or previous experiences, or derived based on the time
and space complexity of the algorithm. If a job is expected to finish execution
within the maximum execution duration limit, it is published into a common job
queue, otherwise it is published into a specific job queue for long-running jobs.

3.2 FaaS Job Handler

The FaaS job handler is a function deployed to the respective FaaS service.
For both AWS Lambda and Google Cloud Functions, the deployment process
includes only three simple steps in the web console: (a) uploading the function
package to object storage; (b) specifying the name and method to run; and (c)



specifying the memory footprint and default execution timeout for the function.
DEWE v3 automatically creates the other components (such as the queues)
needed at start up, and terminates these components at shut down.

The FaaS job handler is invoked by incoming messages in the common job
queue. Each message represents a job that is eligible to run. By design, an
AWS Lambba invocation can contain one or more jobs, while a Google Cloud
Functions invocation contains only one job. The FaaS job handler parses the
job definitions for the names of the binary and input/output files, as well as
the command line arguments. It downloads the binaries and input files from
object storage into a temporary folder, then executes the jobs in the temporary
folder. When the jobs are successfully executed, the FaaS job handler uploads the
output files back to object storage. For both AWS Lambda and Google Cloud
Functions, the FaaS execution environment has only 500 MB storage space.
Because of this limit, the FaaS job handler deletes all the temporary files when
a batch of jobs are successfully executed. A job might fail to execute in the
FaaS execution environment for various reasons, including out-of-memory error,
out-of-disk-space error, or maximum execution time limit exceeded. The FaaS
job handler has a fail over mechanism. If a particular job fails to execute in the
FaaS execution environment, it is sent to a dead letter queue for the workflow
management system to pick up. The workflow management system resubmits
the job to the long-running job queue, from which it is picked up by the local
job handler for execution.

Because the FaaS job handler deletes all temporary files, duplicated data
transfer between object storage and the FaaS execution environment might occur
during the execution, introducing additional communication cost. For example,
a 2.00-degree Montage workflow contains 300 mProjectPP jobs, 836 mDiffFit

jobs, and 300 mBackground jobs. The sizes of the mProjectPP, mDiffFit and
mBackground binaries are 3.2 MB, 0.4 MB and 3.2 MB respectively. If the re-
quired binaries have to be transferred once for each and every job, then the
binaries alone would create approximately 2 GB inbound data transfer from
object storage to the FaaS execution environment. For bigger workflows with a
larger number of similar jobs, such duplicated data transfer can become a serious
issue.

The FaaS job handler implements two levels of caching for binaries and in-
put/output data. The first level is ‘transient’ caching, which applies to multiple
jobs within the same invocation in AWS Lambda. With transient caching, the
FaaS job handler caches the binaries and input/output data within the same
invocation, but deletes them at the end of the invocation. If in an invocation the
FaaS job handler receives 10 mProjectPP jobs then the mProjectPP binary only
needs to be downloaded once, reducing 90% of the repeated data transfer for
the mProjectPP binary. The second level is ‘persistent’ caching, which applies
to multiple invocations with the same FaaS execution environment. Both AWS
Lambda and Google Cloud Functions reuse the underlying execution environ-
ments for performance considerations. If during an invocation a file is created
under the /tmp folder, the same file is accessible in other invocations when the



execution environment is reused. However, neither AWS nor GCP discloses how
the FaaS execution environment is reused, so the availability of files created in
previous invocations becomes non-deterministic. With persistent caching, the
FaaS job handler only caches the binaries for future invocations, because the
accumulated size of the input/output data is usually bigger than the amount of
storage available. When the FaaS job handler is invoked, it first checks the /tmp
folder for previously cached binaries, and transfers only the missing binaries for
the invocation. Such persistent caching approach is inconsistent with the state-
less design principle. In DEWE v3 this is an optional feature that can be turned
on or off.

3.3 Local Job Handler

The local job handler is a multi-thread application running on one or more worker
nodes. The level of concurrency equals the number of CPU cores available on
the worker node. The local job handler polls the long-running job queue for
jobs to execute. When a job is received from the queue, the local job handler
parses the job definition for the name of the binary and input/output files,
as well as the command line arguments. It downloads the binary and input
files from object storage into a temporary folder, then executes the job in the
temporary folder. When the job is successfully executed, the job handler uploads
the output files back to object storage. Because the worker node usually has
sufficient storage space, a caching mechanism is implemented to cache all the
binaries and input/output files to avoid duplicated data transfer.

DEWE v3 has an optional switch to enforce local execution. When local
execution is enforced, all the jobs in the workflow are submitted to the long-
running job queue, from which they are picked up by the local job handler for
execution. In this case, DEWE v3 is said to be running in traditional cluster
mode.

3.4 Others

DEWE v3 is capable of running in three different modes: (a) traditional cluster
mode where all jobs are executed by the local job handler running on a cluster;
(b) serverless mode where all jobs are executed by the FaaS job handler running
in the FaaS execution environment; and (c) hybrid mode where the short jobs
are executed by the FaaS job handler, while the long-running jobs are executed
by the local job handler.

On the management node we run an instance of the local job handler by
default. With this hybrid approach, DEWE v3 is capable of handling both short
and long running jobs, regardless of the maximum execution duration limit im-
posed by the FaaS execution environment, without the need to provision addi-
tional computing resource. To fully utilize the computing resource on the man-
agement node, DEWE v3 provides the option to route a certain percentage of
the short jobs to the long-running job queue, forcing the workflow to be executed
in hybrid mode.



Table 1: The small-scale Montage workflows used in the initial evaluation.

0.25 Degree 0.50 Degree 1.00 Degree 2.00 Degree

Jobs: mProjectPP 12 32 84 300

Jobs: mDiffFit 21 73 213 836

Jobs: mConcatFit 1 1 1 1

Jobs: mBgModel 1 1 1 1

Jobs: mBackground 12 32 84 300

Jobs: mImgtbl 1 1 1 1

Jobs: mAdd 1 1 1 1

Jobs: mShrink 1 1 1 1

Jobs: mJPEG 1 1 1 1

Input File Count 17 37 89 305

Input File Size (MB) 25 65 170 630

Output File Count 117 353 981 3,713

Output File Size (MB) 248 632 1694 6,069

4 Evaluation

In this section, we evaluate the performance of DEWE v3 on both AWS Lambda
and Google Cloud Functions. The evaluation is divided into three parts – initial
evaluation, performance tuning strategy, and large-scale evaluation. For all the
experiments described in this section, we perform the same experiment three
times, and report the average number as the test result.

While DEWE v3 is applicable to other workflow applications, our evaluation
in this study is conducted using Montage workflows due to: (1) the Montage
source code and data is publicly available, (2) the project is well maintained and
documented so that researchers can easily run the Montage workflow with various
tools, and (3) Montage is widely used by the workflow research community as
a benchmark tool to compare the performance of different workflow scheduling
algorithms and workflow management systems [2, 12, 17, 13].

4.1 Initial Evaluation

In this evaluation, we use four small-scale Montage workflows as test cases – a
0.25-degree Montage workflow, a 0.50-degree Montage workflow, a 1.00-degree
Montage workflow, and a 2.00-degree Montage workflow. Table 1 lists the char-
acteristics of these small-scale Montage workflows.

With AWS, the management node is a c3.xlarge EC2 instance in the us-
east-1 region. The EC2 instance has 4 vCPU, 7.5 GB memory and 100 GB
general-purpose SSD EBS volume. The common job queue is a Kinesis stream
with 10 shards, and the batch size of the Lambda function trigger is set to
10. The Lambda execution environment has 1536 MB memory. With GCP, the
management node is a customized n1-highcpu-4 GCE instance in the us-central1
region. The GCE instance also has 4 vCPU, 7.5 GB memory and 100 GB SSD
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(b) Google Cloud Functions.
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Fig. 3: Small-scale Montage workflows running on AWS and GCP with respect
to differnet data sizes, 0.25, 0.50, 1.00 and 2.00, respectively.

persistent storage. The Google Cloud Functions execution environment has 2048
MB memory.

In this evaluation, we carry out three sets of experiments. The first set of
experiments are run in serverless mode. The only exception is the mImgtbl and
mAdd jobs in the 2.00-degree Montage workflow are executed by the local job han-
dler, because the size of the input/output files exceeds the storage space available
in the FaaS execution environment. For this particular test, the 2.00-degree Mon-
tage workflow is executed in hybrid mode. The second set of experiments are
run in traditional cluster mode, where all jobs are executed by the local job han-
dler running on the management node. The third set of experiments are run in
hybrid mode to evaluate the effect of persistent caching, with the mConcatFit,
mBgModel, mAdd, mShrink and mJPEG jobs being executed by the local job han-
dler running on the management node. In serverless mode, the execution time
is noted as FaaS execution time. In cluster mode, the execution time is noted
as local execution time. In hybrid mode, the execution time is noted as hybrid
execution time. We do not compare the test results obtained from AWS and
GCP. Instead, we focus on comparing the execution time observed on the same
cloud.

The local and FaaS execution time obtained from AWS is presented in Figure
3a. In all four test cases, FaaS execution time is slightly longer than local execu-
tion time. For the 0.25-degree workflow, FaaS execution time is 80% greater than
local execution time. For the 0.50-degree workflow, FaaS execution time is 56%
greater than local execution time. For the 1.00-degree workflow, FaaS execution
time is 23% greater than local execution time. For the 2.00-degree workflow,
FaaS execution time is 11% greater than local execution time. The FaaS execu-
tion environment has less vCPU and memory resource than the local execution
environment. The local job handler caches all binaries and input/output files
throughout the execution, while the FaaS job handler downloads them for each
invocation. It is expected that it takes longer for the same job to run by the FaaS
job handler. When the workflow is small, the concurrent execution of a small
number of jobs by the FaaS job handler is not sufficient to compensate for the
above-mentioned performance lost, resulting in relatively longer FaaS execution
time. As the size of the workflow grows, the concurrent execution of a larger



number of jobs by the FaaS job handler gradually offset the above-mentioned
performance lost, reducing the difference between FaaS execution time and local
execution time. Considering the small difference between FaaS and local execu-
tion times for the 2.00-degree workflow, AWS Lambda seems to be a promising
execution environment for workflows with a high level of concurrency.

The local and FaaS execution time obtained from GCP is presented in Fig-
ure 3b. For the 0.25-degree workflow, FaaS execution time is 84% greater than
local execution time. For the 0.50-degree workflow, FaaS execution time is 123%
greater than local execution time. For the 1.00-degree workflow, FaaS execution
time is 99% greater than local execution time. The 2.00-degree workflow fails
to execute on Google Cloud Functions within a reasonable time frame due to a
large number of “quota exceeded” errors. Google Cloud Functions has a default
1 GB per 100 seconds quota for inbound and outbound socket data transfer.
Montage is a data-intensive workflows, the large amount of data transfer quickly
consumes the above-mentioned quota, resulting in the “quota exceeded” errors.
When this occurs, Google Cloud Functions waits for the next quota period to ex-
ecute the jobs waiting in the queue, causing the extra increase in FaaS execution
time. In our evaluations we are given a significant quota increase from Google,
allowing us to achieve 10 GB inbound and outbound socket data transfer per
100 seconds. With this new limit, we still frequently encounter the same error
for the 2.00-degree Montage workflow. As such, we carry out our subsequent
evaluations on AWS only.

The effect of persistent caching is presented in Figure 3c. When the batch
size is 1, the effect of caching is not obvious for smaller workflows (0.25-degree
and 0.50-degree), but becomes significant for bigger workflows (1.00-degree and
2.00-degree). This is because the FaaS job handler executes only 1 job during
each invocation. The transient caching mechanism is not in effect, and persistent
caching becomes the only optimization for binary and data staging. When the
batch size is 10, the effect of persistent caching is obvious for smaller workflows
(0.25-degree, 0.50-degree and 1.00-degree), but becomes insignificant for bigger
workflows (2.00-degree). This is because the FaaS job handler now executes 10
jobs during each invocation. The transient caching mechanism already elimi-
nates 90% of the duplicated transfer for the binaries, with very little space left
for further optimization with persistent caching. Therefore, for the subsequent
experiments reported in this paper, we turn off the persistent caching option.

4.2 Performance Tuning

In this evaluation, we use a 4.00-degree Montage workflow as the test case. The
workflow has 802 mProjectPP jobs, 2,316 mDiffFit jobs, and 802 mBackground

jobs, making it an ideal use case for parallel optimization. The workflow has
817 input files with a total size of 2,291 MB, and 10,172 output files with a
total size of 17,010 MB. We execute the 4.00-degree Montage workflow in hybrid
mode, with the mConcatFit, mBgModel, mAdd, mShrink and mJPEG jobs being
executed by the local job handler running on the management node. These jobs
are not capable of running in the Lambda execution environment because they



run longer than the maximum execution duration limit, or they require more
storage or memory resource than what is available. To establish a baseline for
performance tuning, we execute the workflow in traditional cluster mode on the
management node. The local execution time observed is 950 seconds.

In hybrid mode, there are three parameters that can affect hybrid execution
time, including (a) the number of shards in the Kinesis stream, (b) the batch
size for each invocation, and (c) the percentage of short jobs that are handled by
the local job handler. In this evaluation, we carry out three sets of experiments,
including (a) a fixed number of shards, all short jobs are executed by the FaaS
job handler, with the variable being the batch sizes; (b) a fixed batch size, all
short jobs are executed by the FaaS job handler, with the variable being the
number of shards; and (c) a fixed number of shards and a fixed batch size, with
the variable being the percentage of short jobs executed by the local job handler.

In test (a), we used a Kinesis stream with 10 shards as the common job queue,
then change the batch size of the Lambda function trigger. As shown in Figure
4a, the hybrid execution time decreases when the batch size increases. With
transient caching, the FaaS job handler caches the binaries and input/output
files needed for a particular invocation. Increasing the batch size reduces the
number of invocations and the amount of duplicated data transfer, hence the
decrease in hybrid execution time. However, the batch size can not be increased
indefinitely, because the size of the files to be cached gradually exceeds the
storage space limit. For the Montage workflow, We observe that the maximum
batch size we can achieve is 30. When the batch size is bigger, we frequently
observe jobs fail due to “no space left on device” errors.

In test (b), we set the batch size of the Lambda function trigger to 10, then
use Kinesis streams with different number of shards as the common job queue.
As shown in Figure 4b, the hybrid execution time decreases when the number
of shards increases. With AWS Lambda, the number of concurrent invocations
equals to the number of shards in the Kinesis stream. Increasing the number
of shards increases the number of concurrent invocations, hence the decrease in
hybrid execution time. As the number of shards continues to increase, the hybrid
execution time gradually converges. This is because the workflow has a set of
mConcatFit, mBgModel, mAdd, mShrink and mJPEG single-thread jobs that run in
a sequential manner. The mBgModel job alone takes approximately 350 seconds
to run, accounting for approximately 45% of the hybrid execution time. These
jobs now become the dominating factor in the hybrid execution time.

In test (c), we use a Kinesis stream with 10 shards as the common job queue,
the batch size of the Lambda function trigger is set to 30. In addition to the
long-running jobs such as mConcatFit, mBgModel, mAdd, mShrink and mJPEG,
we schedule a fraction of the short jobs to the local job handler running on the
management node. As shown in Figure 4c, the hybrid execution model effectively
utilize the idling computing resource on the management node, resulting in the
decrease in hybrid execution time. However, when the amount of jobs routed to
the local job handler exceeds the capacity of the management node, the hybrid
execution time starts to increase again.
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Fig. 4: Execution time of a 4.00-degree Montage workflow on AWS.

Table 2: Large-scale test environments. Hybrid environments differ by the num-
bers of shards, 28 and 56, respectively; hence Hybrid-28 and Hybrid-56.

Cluster-1 Cluster-2 Cluster-3 Hybrid-28 Hybrid-56

Instance Type c3.2xlarge c3.2xlarge c3.2xlarge c3.2xlarge c3.2xlarge

Number of Nodes 1 2 3 1 1

Total vCPU cores 8 16 24 8 8

Total Memory (GB) 15 30 45 15 15

Total Storage (GB) 500 1000 1500 500 500

Job Stream Shards 0 0 0 28 56

Hourly Price (USD) 0.42 0.84 1.26 0.84 1.26

Lambda Function (USD) - - - 0.06 0.06

Total Cost (USD) 0.42 0.84 1.26 0.90 1.32

4.3 Large-Scale Evaluation

In this evaluation, we use a 8.00-degree Montage workflow with a total of 13,274
jobs as the test case. The workflow has 2,655 mProjectPP jobs, 7,911 mDiffFit

jobs, and 2,655 mBackground jobs. The workflow has 4,348 input files with a
total size of 8,524 MB, and 32,753 output files with a total size of 58,561 MB.

Traditionally, when scientists need to speed up the execution of a workflow,
they add worker nodes to the cluster. With the hybrid execution model, we sim-
ply use a Kinesis stream with more shards to increase the number of concurrent
invocations. To compare the performance between the traditional cluster execu-
tion model and the proposed hybrid execution model, we use the local execution
time of the workflow on the management node as the baseline. The management
node is a c3.2xlarge EC2 instance in the us-east-1 region, with 8 vCPU cores, 15
GB memory and 500 GB general-purpose SSD EBS volume. Then we run two
sets of experiments with the same workflow. In the first set of experiments, we
compare (a) the cluster execution time on a two-node cluster with 2 x c3.2xlarge
EC2 instances with (b) the hybrid execution time on 1 x c3.2xlarge manage-
ment node with 28 shards in the Kinesis stream, where 20% of the short jobs
are executed by the local job handler. In the second set of experiments, we com-
pare (a) the cluster execution time on a three-node cluster with 3 x c3.2xlarge
EC2 instances with (b) the hybrid execution time on 1 x c3.2xlarge management
node with 56 shards in the Kinesis stream, where 15% of the short jobs are exe-
cuted by the local job handler. For both sets of experiments, the hourly cost of
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Fig. 5: Execution time of a 8.00-degree Montage workflow on AWS.

both execution environments is the same. In this test, the execution cost of the
Lambda function falls within the AWS Lambda free-tier offering. We estimate
the execution cost of the Lambda function based on the number and duration
of invocations obtained from CloudWatch and multiply them with the standard
pricing of the AWS Lambda service. The details of these test environments are
listed in Table 2.

Figure 5 presents the test results. In the first set of experiments, the tradi-
tional cluster execution model (Cluster-2) achieves 18% speed-up while the new
hybrid execution model (Hybrid-28) achieves 22% speed-up, as compared with
the baseline obtained on Cluster-1. In the second set of experiments, the tradi-
tional cluster execution model (Cluster-3) achieves 20% speed-up while the new
hybrid execution model (Hybrid-56) achieves 25% speed-up, as compared with
the baseline obtained on Cluster-1. Note that Hybrid-28 achieves more speed-up
than Cluster-3, while the total cost of Hybrid-28 is only 70% of Cluster-3.

5 Related Work

There have been an abundance of literature on workflow management systems
such as DAGMan [5], Pegasus [6] and Kepler [3]. These frameworks use clusters
with multiple worker nodes for as the execution environment. Such approaches
tend to be heavy-weight and are inaccessible to scientists who lack dedicated
hardware and support staff.

Polyphony [18] was designed and developed with AWS as the target execu-
tion environment, but the software is not accessible to the workflow researcher
community. The work in [15] deals with scheduling scientific workflows across
multiple geographically distributed resource sites; however, the scale of workflows
is still limited to small, e.g., 255 tasks per workflow. All of the above-mentioned
workflow management systems exhibit inefficiency in scheduling a large number
of short-life jobs across multiple worker nodes.

To execute large scale scientific workflows in a cost effective way, the comput-
ing resources needed must be carefully planned. Such planning usually involves



cost and performance trade-off for scientists. In recent years, researchers spend a
significant amount of effort on scheduling and resource allocation algorithms to
meet certain deadline and cost constraints [7] [11] [12] [13] [15] [17] [19]. These
works are rather complementary and/or supplementary that can significantly
benefit from using DEWE v3.

AWS introduced Lambda [4] in 2014, while Google introduced Cloud Func-
tions [8] in 2016. Malawski [16] reviewed the various options of executing sci-
entific workflows in serverless infrastructures. The author created a prototype
workflow executor function using Google Cloud Functions, with Google Cloud
Storage for data and binary storage. The author used a 0.25-degree Montage
workflow and a 0.4-degree Montage workflow to evaluate the prototype and
found the approach highly promising. However, unlike the test cases in our study
(up to 8.00-degree Montage workflow), the evaluation in [16] is limited to small-
scale workflows. Also, the work in [16] failed to notice the impact of the limited
inbound and outbound socket data quota on the execution of data-intensive
scientific workflow applications.

6 Conclusion

In this paper, we have presented DEWE v3, a workflow management system with
FaaS as the target execution environment. We present the design and implemen-
tation of DEWE v3, as well as its capability in executing large-scale scientific
workflows. We demonstrate that AWS Lambda offers an ideal execution environ-
ment for scientific workflow applications with complex precedence constraints.
Google Cloud Functions, in its current form, is not suitable for executing scien-
tific workflow applications due to its limited inbound and outbound socket data
quota.

We propose and validate a hybrid execution model that is effective in dealing
with the various limits imposed by the FaaS execution environment. We take
advantage of the hybrid execution model to speed up the workflow execution
by fully utilizing the computing resource available on the management node.
The largest scale experiment presented in this paper is an 8.00-degree Montage
workflow with over 13,000 jobs and more than 65 GB input/output data. The
hybrid execution mode achieves shorter execution time with only 70% of the
execution cost, as compared to the traditional cluster execution mode. Since
each Lambda function invocation can handle up to 30 jobs in one batch, further
speed-up can be achieved by scheduling jobs with precedence requirements into
a the same invocation. This will be addressed in our future works.

DEWE v3 significantly reduces the effort needed to execute large-scale scien-
tific workflow applications. It liberates scientist from the tedious administrative
tasks involved in the traditional cluster approach, allowing them to focus on
their on research work.
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