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Abstract—The move from the traditional Software-as-a-
Product (SaaP) model to the Software-as-a-Service (SaaS) model
is apparent with the wide adoption of cloud computing. Unlike the
SaaP model, the SaaS model delivers a diverse set of software fea-
tures directly from public clouds to a large number of arbitrary
users with varying quality of service (QoS) requirements. QoS is
typically assured by admission control. However, there are two
outstanding issues with traditional QoS systems: (1) they are usu-
ally designed and developed with a special purpose, making them
difficult to be reused for other use cases; and (2) they have limited
scalability (i.e., vertical scalability) due to the write-intensive
nature of admission control workload. In this paper, we present
Janus - a QoS framework that is generic and scalable for SaaS
applications taking full advantage of cloud’s inherent horizontal
scalability (scaling-out). Janus uses a multi-layer architecture to
eliminate the communication between nodes (being scaled out) in
the same layer achieving horizontal scalability without sacrificing
vertical scalability. Janus ensures accurate admission control
(QoS decisions) using a distributed set of leaky buckets with a
refill mechanism. Janus also adopts a key-value request-response
mechanism for easy integration with the actual application. We
extensively evaluate Janus on AWS cloud with both Apache HTTP
server benchmarking tool and a photo sharing web application.
Our experimental results demonstrate that (a) Janus achieves
linear scalability both vertically and horizontally, and (b) Janus
can be integrated with existing applications with a minimum
amount of code change. In particular, Janus achieves more than
100,000 requests per second with only 10 nodes (4 vCPU cores
on each node) in the QoS server layer and 90% of the admission
control decisions were made in 3 milliseconds.

Keywords—admission control, distributed system, scalability,
write intensive workload

I. INTRODUCTION

In QoS management, admission control refers to the action
of determining whether a particular request can be admitted
such that all admitted requests can be served with the desired
performance. Traditionally, QoS is implemented as an integral
part of the device or system, hard coded with a very limited
set of QoS rules specifically tailored for the device or system
[1], [2]. Different devices or systems need to implement their
own QoS module, which cannot be shared with or ported
to other devices or systems. This is not an issue when the
software is sold with the traditional Software-as-a-Product
(SaaP) model, where the software is installed on the end user’s
own computing resource. In recent years, there is a trend to
deliver software features directly from public clouds in the
form of Software-as-a-Service (SaaS). With the SaaS model,

software is usually deployed on a centralized system, providing
service to multiple tenants. The increased workload on the
SaaS application leads to the increased pressure on the QoS
system. As such, the scalability of the QoS system becomes
an important issue in the move to the SaaS model.

Admission control differs from other API services (with
a “write once, read many” pattern) in that most requests are
composite requests that include ‘one read operation and one
write operation’. In a service oriented architecture, the end user
purchases a certain capacity (quota) from the service provider,
which can be the number of requests per second/minute/hour.
When the user makes an API call, the QoS system needs
to perform (a) a read operation to get the current quota,
(b) deduct one from the current quota, and (c) immediately
perform a write operation to set the new quota. This is a
write intensive workload that requires read-after-write strong
consistency. Adding read replicas to the data layer introduces
complexity and demands more computing resources (network
bandwidth in particular), but cannot bring performance gain to
the system due to the eventual consistent nature of the read
replicas. Therefore, the horizontal scalability of QoS systems
remains a challenging problem.

There exists very little literature on the horizontal scal-
ability of QoS systems. Most existing attempts come from
the telecommunication industry, focusing on improving the
QoS of router devices [3], [4]. Papazoglou et. al. [5], [6], [7]
list QoS as an important research direction in service-oriented
computing. To the best of our knowledge, this paper is the first
work for SaaS applications addressing two outstanding issues
with traditional QoS systems: (1) their application-specific
nature and (2) their limitation to vertical scaling.

In this paper, we present Janus1 as a generic and scalable
QoS framework. Janus employs a multi-layer architecture to
create multiple independent partitions within a QoS system
(Figure 1). Such a design eliminates the communication
between different nodes in the same layer, improves both
scalability and performance the QoS system. The specific
contributions of this paper are:

• We design and implement a multi-layer architecture
that includes a load balancer layer, a request router
layer, a QoS server layer, and a databases layer.
Such a multi-layer design is effective in segregating

1Janus is a gatekeeper god in ancient Roman religion and myth.
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QoS requests into multiple independent partitions to
achieve both vertical and horizontal scalability.

• We use a distributed set of leaky buckets with a refill
mechanism to make QoS decisions. This provides
accurate admission control according to the quota
the user purchases, but still allows occasional burst
operations when the user accumulates credit.

• We use a key-value request-response mechanism so
that Janus can be integrated with a wide range of
devices, applications, or services that demand QoS.

• We demonstrate that Janus achieves linear scalability
both vertically and horizontally. Existing web applica-
tion can be easily integrated with Janus via a simple
wrapper layer.

In the performance evaluation, a modified version of the
Apache HTTP server benchmarking tool (which is commonly
known as “ab”) is used to generate massive concurrent QoS
requests to Janus. Janus achieves more than 100,000 requests
per second with only 10 nodes (4 vCPU cores on each node) in
the QoS server layer. In the application integration evaluation,
we use a photo sharing web application to demonstrate how
to integrate Janus with existing applications. We observe
that 90% of the admission control decision were made in 3
milliseconds, which is only a small overhead as compared
with the application’s own latency. The horizontal scalability
of various layers, the painless integration process, plus the very
low latency overhead, prove that Janus can be used to provide
QoS service for a wide range of SaaS applications.

The rest of this paper is organized as follows. Section
II describes the architecture design of Janus. Section III
describes the implementation of Janus. Section IV describes
how Janus can be used in various use cases. In Section V, we
evaluate the performance of Janus, using AWS cloud as the
test environment. Section VI reviews related work, followed
by our conclusions in Section VII.

II. ARCHITECTURE DESIGN

Janus consists of four major layers – Load Balancer,
Request Router, QoS Server, and Database (Figure 1).
The load balancer layer distributes QoS requests from the
QoS client across multiple request router nodes/instances. The
request router layer further segregates the QoS requests to
the appropriate QoS server for decision making. The QoS
server layer makes the admission control decision based on
pre-defined Qos rules in the database. The database layer stores
QoS rules as well as other system properties that are used for
initialization and check pointing.

A QoS request comes with a QoS key. The composition of
the QoS key depends on the nature of the service provided to
the end user. For a web service with a single feature, different
user might purchase different access rates, then the QoS key
can be the user identification. For a NoSQL database service,
a particular user might purchase different access rates for
different databases, then the QoS key can be the combination
of the user identification and the database name. The QoS
response is a boolean value where TRUE indicates access
should be allowed and FALSE indicates access should be
denied.
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Fig. 1: Janus Architecture Design: (a) with Gateway Load
Balancer and (b) with DNS Load Balaner.

A. Load Balancer

The load balancer serves as the service endpoint for Janus.
The load balancer can be implemented as either a gateway
load balancer (Figure 1a) or a DNS load balancer (Figure 1b).

As shown in Figure 1a, a gateway load balancer is an
appliance that accepts QoS requests via HTTP/HTTPS from
the QoS client, then distributes the requests across multiple
request router nodes behind the load balancer. The load bal-
ancer needs to support the HTTP/HTTPS protocol, because the
request router nodes only accept HTTP/HTTPS requests. Dif-
ferent load balancer might support different routing algorithms.
For example, the round robin routing algorithm distributes
incoming HTTP/HTTPS requests to the back end nodes one by
one, while the least connections algorithm distributes incoming
HTTP/HTTPS requests to the back end node with the least
number of outstanding HTTP/HTTPS requests. If deployed in
an on-premise data center, the load balancer can be a physical
device or a software appliance. If deployed on public clouds,
most public cloud service providers provide load balancing
services, such as the Amazon Elastic Load Balancer (ELB).

As shown in Figure 1b, a DNS load balancer is a DNS
server that accepts DNS query requests from the operating
system running the QoS client, then returns a list of IP
addresses representing the request router nodes. Most DNS
servers support the round robin routing algorithm. That is,
with each DNS response, the IP address sequence in the list
is permuted. Usually, the QoS client attempts to connect the
request router with the first IP address returned from the DNS
query. As such, on different connection attempts, the same
QoS client would connect to different request router nodes,
thus distributing the requests among different request router
nodes.

DNS load balancing occurs at a higher level in that DNS
resolution happens before the HTTP/HTTPS connection is
made. As such, it is possible to use a combination of DNS
load balancing and gateway load balancing to improve the
performance of the whole system. For example, a gateway
load balancer usually has a single IP address and certain
load balancing capacity limits such as throughput or requests
per second. In large-scale deployments, multiple gateway load
balancers can be deployed. The client connects to different
gateway load balancer nodes via DNS resolution, while the
gate load balancer nodes further distribute the requests to the
worker nodes in the back end.
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Fig. 2: Request Routing Algorithm.

B. Request Router

The request router is a stateless web application that
receives incoming QoS requests from the QoS client - probably
through a gateway load balancer. As shown in Figure 2, the
request router determines which QoS server in the back end
should be contacted using a hashing algorithm. The input
parameter to the hashing algorithm is the QoS key, which is
a string. The hash function uses a 32-bit cyclic redundancy
checksum (CRC) algorithm to generate an integer from the
QoS key, then determines the target QoS server using the mod-
ulo operation. The request router forwards the QoS request to
the selected QoS server for processing. With a fixed number of
QoS servers in the back end, QoS requests with the same QoS
key are always routed to the same QoS server, regardless of
which request router node is handling the request segregation.
This is very similar to a traditional web application with a
database cluster in the back end, where the web front end
picks the database node via a hashing algorithm. Because of
the stateless nature of the request router, it can be dynamically
scaled in or scaled out based on the actual workload.

C. QoS Server

The QoS server receives incoming QoS requests from the
request router, determines whether access should be allowed
or denied, then produces the QoS response. At the core of the
QoS server is the leaky bucket [8] QoS algorithm, as shown in
Figure 3. For each QoS key we maintain a leaky bucket with a
certain capacity, where the water level represents the remaining
credits. The bucket is being refilled at a constant rate, which
is the access rate the user purchases from the service provider.
When the user makes an API call to the service, the user
consumes one credit from the bucket. From a higher level,
the QoS server layer can be visualized as a set of distributed
leaky buckets.

Assuming that the leaky bucket is initially fully filled with
an initial credit equal to the capacity C of the bucket, the
bucket is being refilled at rate A and consumed at rate B. Then
the available credit at any time t can be noted as f(t), where

f(t) = C + (A−B) ∗ t (1)

Capacity	

Refill	

Credit	

Consume	

Fig. 3: Leaky Bucket QoS Algorithm.

When the refill rate A is greater than the consume rate
B, the credit gradually accumulates but it cannot exceed the
capacity of the bucket C. When the refill rate A is smaller than
the consume rate B, the credit gradually depletes but it cannot
be less than zero. As such, the value of f(t) is [0, C], or

0 <= f(t) <= C (2)

The QoS server maintains a local QoS rule table. A QoS
rule includes the QoS key, the capacity of the leaky bucket, the
refill rate, and the current credit. Each QoS rule is represented
by a leaky bucket. When the QoS server receives a QoS
request, it looks into the QoS rule table for the particular QoS
rule with that particular QoS key. If the QoS rule does not
exist in the QoS rule table, the QoS server creates the QoS
rule with the information from the database in the back end,
then puts the newly created QoS rule into the QoS table. The
QoS server looks into the leaky bucket associated with the QoS
rule to make QoS decisions. If the current credit is greater than
zero, it returns TRUE as the QoS response, otherwise it returns
FALSE as the QoS response.

With the leaky bucket QoS algorithm, Janus allows the
end user to accumulate unused credits for burst traffic. For
example, a particular end user might purchase an access rate
of 100 requests per second, but the service provider sets
the capacity of the leaky bucket to 1000. If the end user
stops accessing the service for more than 10 seconds and the
leaky bucket becomes full, then the end user is allowed to
achieve higher request rates such as 500 requests per second
– assuming that the service itself is capable of supporting it –
until the leaky bucket is depleted.

D. Database

The database layer is a traditional relational database,
which stores all the QoS rules in a table. For high-availability
a master/slave configuration can be setup. For a large-scale
service-oriented application, the number of QoS rules would
be quite large because (a) the service might have a large user
base, and (b) multiple rules can be configured for a single user.

Over time, existing rules can be deleted or modified, and
new rules can be created, depending on the needs from each
individual end user. As such, it would be expensive for each
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QoS server to maintain a local copy of all the QoS rules in its
local QoS rule table and keep them in synchronization with the
QoS rule table in the database. Instead, when the QoS server
receives the request for a particular QoS key for the first time,
it makes a query to the database for the corresponding QoS
rule and creates a new leaking bucket for the QoS key in the
local QoS table. With this approach, new QoS keys/rules are
immediately effective as soon as they are added to the database.
When the query to the database returns an empty result, the
QoS key requested does not exist in the database. Depending
on the nature of the service provided, this can be a guest/test
access request, or an unauthorized access request. In this case,
the QoS Server sets up a new leaking bucket for the QoS key
in the local QoS table with the default QoS rules. For example,
the default QoS rules can be a combination of zero capacity
and zero refill rate to deny access, or a combination of a small
capacity and a small refill rate to grant limited access.

To keep the local QoS rules in synchronization with the
database, the QoS server makes queries to the database with the
QoS keys in the local QoS rule table with a configurable update
interval, then updates the local QoS rule table with the query
results. For check-pointing, the QoS server also updates the
database with the current credit for the QoS keys in the local
QoS table with a configurable update interval. When a partic-
ular QoS server fails, the handling of the failed QoS server
depends on its high-availability configuration. When high-
availability is enabled for the QoS server, minimum downtime
can be achieved because the new master node already has
an up-to-date local QoS table. When high-availability is not
enabled for the QoS server, a replacement QoS server is
launched for the failed QoS server. The replacement QoS
server gradually reinitializes the local QoS rule table by
making queries to the database when it receives requests
with new QoS keys. With the check-pointing mechanism,
the replacement QoS server will use the last check-pointed
credit information from the database as the initial credit value.
Because the total number of QoS servers remains the same,
the hash results – and hence the routing rules – produced by
the request router layer remain the same. As such, a failed
QoS server is a localized failure in that it does not impact the
normal operation of other QoS servers in the system.

With this approach, the QoS servers communicate with
the database only when (a) receiving requests with new QoS
keys, (b) synchronizing with the database with a configurable
update interval, and (c) check-pointing to the database with
a configurable update interval. These are infrequent access
requests and do not present a heavy workload on the database.
Each QoS server only maintains a subset of the global QoS rule
table, effectively reducing the memory requirement on the QoS
server. There is no communication between the QoS servers in
Janus. They are totally unaware of the existence of each other.
Furthermore, there is no disk I/O on either the request router
layer or the QoS server layer.

III. IMPLEMENTATION

Janus is designed to be generic and can be deployed on
either public clouds or on-premise data centers. In this paper,
we carry out our development and testing on AWS only. We
make the effort to reuse existing technologies as much as
possible. If the functional and performance requirements of a

particular component can be met with an existing technology,
we directly use the existing technology in our implementation.
For example, we use Route53 for DNS load balancing, ELB
for gateway load balancing, RDS for the database layer, and
EC2 instances as the nodes in the request router and QoS
server layers. In subsequent sections, all mentioning of “node”
or “instance” refers to EC2 instances launched in the ap-
southeast-2 (Sydney) region. The operating system running on
the EC2 instances is 64-bit Ubuntu Server 16.04.3 LTS.

Janus can also be deployed on other public clouds or on-
premise data centers. Most public cloud service providers offer
services similar to EC2, RDS, ELB, and Route53. If deployed
in on-premise data centers, the load balancer layer can be
implemented with a hardware load balancer with support
for the HTTP protocol, while nodes in other layers can be
implemented on either physical servers or virtual machines.

A. Load Balancer

In the case of DNS load balancing, we use the Amazon
Route53 DNS service as the load balancing layer. Janus is
represented by a domain name whose A record includes the IP
addresses of the request router nodes. With each DNS query
request, the IP address sequence in the DNS query result is
permuted.

In the case of gateway load balancing, we use the Amazon
ELB as the load balancing layer. Janus is represented by a
domain name of the ELB. It should be noted that ELB is in
fact a combination of DNS load balancer and gateway load
balancer. with AWS, each AWS region has multiple isolated
locations known as Availability Zones (AZs). ELB supports
load balancing across multiple availability zones by creating
one or more load balancer nodes in each availability zone.
The DNS endpoint for the ELB is managed by the Amazon
Route53 DNS service. The DNS query result includes the IP
addresses of all load balancer nodes allocated to the ELB. With
each DNS query request, the IP address sequence in the DNS
query result is permuted.

B. Request Router

The request router is implemented with PHP (version
7.0.22) running on the Apache web server (version 2.4.18).
It receives QoS requests from the QoS client via HTTP. For
admission control purposes, QoS requests need to be processed
in a very fast manner. For performance considerations, the
request router uses UDP instead of TCP to communicate with
the QoS server in the back end. Although the TCP protocol
ensures reliable connection and communication, the overhead
of opening and closing a large volume of short-lived TCP
connections is too expensive. With its connect-less nature, the
UDP protocol can achieve higher communication efficiency.

However, the UDP protocol does not ensure reliable com-
munication. To compensate for the possible data lost in UDP
communication, we use a 100-microsecond communication
timeout and a maximum number of 5 retries. In the best
case, the communication between the request router and the
QoS server is completed at the first attempt within 100
microseconds. In the worse case, the communication between
the request router and the QoS server fails after 5 retries, which
is 500 microseconds. When the request router fails to obtain a
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response from the QoS server after 5 retries, the request router
returns a default reply to the QoS client.

C. QoS Server

The QoS server is implemented with Java running on
OpenJDK version 1.8.0. The major components include (a) the
local QoS table, (b) the UDP listener thread, (c) the worker
threads, and (d) high-availability and system maintenance
threads. The local QoS table is represented by a synchronized
hash map, where the key is the QoS key and the value is
the leaky bucket representing the corresponding QoS rule.
The local QoS table is maintained by a house-keeping thread,
which refills the leaky buckets in the local QoS table with
predefined intervals. The UDP listener thread receives UDP
packets from the request router and pushes the packets into a
FIFO. There are N worker threads polling the FIFO for packets
to process, where N equals to the number of vCPU’s available
on the QoS server. Based on the state of the leaky bucket, the
worker thread produces the QoS response and sends it back to
the request router via UDP. The worker thread does not care
about whether the request router receives the response or not.
If the request router does not receives a response within the
timeout period, the requester router will actively resend the
same request to the QoS server until a response is received,
or has reached the maximum number of retries. The high-
availability thread waits for incoming connections from slave
nodes, and sends back the current local QoS table upon request.
The system maintenance thread periodically checks with the
database to see if there are any updates to the rules in the local
QoS table. When updated rules are found, the corresponding
leaky bucket representing the corresponding QoS is updated
with the latest values.

When high-availability is desired, an optional slave node
can be configured for each QoS server. The slave node contin-
uously replicates the local QoS rule table from the master node
at a configurable interval. The request router identifies the QoS
server nodes in the back end via their DNS names. The master-
slave configuration is managed by the Amazon Route53 DNS
health check and fail over mechanism. The DNS resolution
result for a master-slave QoS server pair only contains the IP
address of the master node. In the event that the master node
fails, the slave node becomes the new master node, and its
IP address replaces the IP address of the failed old master
node. The new master node already has an up-to-date version
of the local QoS table, allowing the QoS server to continue
functioning with minimum interruption. After a successful fail
over, we can terminate the original failed master node and
launch a new slave node to form a new master-slave pair.

D. Database

The database is implemented on top of MySQL.The QoS
rules table includes four columns - the QoS key, the refill rate,
the capacity of the leaky bucket, and the remaining credit in
the bucket. The size of a QoS rule is approximately 100 bytes.
The size of the table can be easily fit into the memory of a
decent database server. In most cases, the QoS server retrieves
and updates a single record in the QoS rules table at a time.
As such, we set the QoS key as the primary key in the QoS
rules table to speed up queries. To fully utilize the abundant
memory available on the database server, on system startup we

issue a query “SELECT * FROM qos rules” to load the full
table into the memory.

In our implementation we use an RDS instance run-
ning MySQL 5.7. The underlying operating system for RDS
MySQL instances is Amazon Linux instead of Ubuntu. When
high-availability is desired, the RDS instance can be deployed
in a Multi-AZ fashion. In this case, the RDS instance includes
a master node in one availability zone and a standby node
in another availability. Similar to the master-slave fail over
mechanism in the QoS server, the RDS instance is represented
by a DNS name managed by Amazon Route53. When the
master node is in a healthy state, the DNS resolution result
contains only the IP address of the master node. When the
master node fails, the standby node is promoted to be the new
master node, and the DNS resolution result contains the IP
address of the new master node.

IV. USE CASES

In a typical service-oriented architecture without QoS sup-
port, the end user makes API calls to the service endpoint.
The service performs the necessary authentication and autho-
rization, then passes the API calls to the execution engine for
processing. The execution engine produces the response, which
is returned to the end user. To add QoS support, for each API
call the service makes a request to Janus with the QoS key.
If Janus returns TRUE, the service passes the API call to the
execution engine for processing; if Janus returns FALSE, the
service actively throttles the API call and returns a throttling
message to the end user. Figure 4 shows the flow diagrams
for both service-oriented architectures with and without QoS
support.

Execution 
Engine

Auth
Service 

Endpoint

Request Response

(a) Service without QoS support

Execution 
Engine

Auth
Service 

Endpoint
QoS

Throttle

Request Response

Response

T

F

(b) Service with QoS support

Fig. 4: Flowchart for services with and without QoS Support.

Janus can be integrated with existing applications with
minimum code changes. For example, a service provider may
grant access to its web services based on the end user’s
username or IP address. When there is no QoS in place, API
calls from certain end users may exceed the desired request
rate, resulting in resource depletion in the execution engine.
With QoS in place, the service provider can use the end user’s
username or IP address as the QoS key to sell different access
rate to different end users. In this case, the access rate is
represented by the refill rate of in the QoS rule.

We use a photo sharing web application developed in
PHP to demonstrate how to integrate Janus with existing
applications. The index page of the web application performs
the following steps: (a) obtains the IP address of the end user,
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TABLE I: EC2 instance types.

vCPU
Cores

Memory
(GB)

Network
(Mbps)

Price
(USD/hr)

c3.large 2 3.75 250 0.188
c3.xlarge 4 7.5 500 0.376
c3.2xlarge 8 15 1000 0.752
c3.4xlarge 16 30 2000 1.504
c3.8xlarge 32 60 10000 3.008
r3.xlarge 4 30.5 500 0.455
r3.2xlarge 8 61 1000 0.910

(b) connects to a Memcached server for session sharing, (c)
connects to a MySQL server to query for the latest N user
uploaded images, and (d) generates the HTML response based
on the above-mentioned query results. In this demo, we use
the IP address of the end user as the QoS key and perform
the QoS check before performing step (b). As shown in the
following code snippet, the integration between Janus and the
existing web application can be easily done via a wrapper. In
real life applications, the service provider can define different
QoS rules for a list of known IP address, while requests from
unknown IP addresses will use the default QoS rule.

<?php
include("qos_client.php");
$key = $_SERVER[’REMOTE_ADDR’];
$qos = qos_check($key);
if ($qos) {
// Allow access to original code
include("original_index.php");
}
else {
// Throttling
header("HTTP/1.1 403 Forbidden");
}
?>

A wide range of use cases can be derived from the above-
mentioned example. Using IP address as the QoS key allows
reasonable anonymous browsing, at the same time mitigating
the threats from malicious or unintentional surge requests.
Crawlers from certain search engines might also produce
occasional burst workloads, quickly depleting the computing
resources for a website. QoS rules can be setup with the
User-Agent string in the HTTP request header as the QoS
key, allowing access from search engines with a reasonable
access rate. For a NoSQL database service, an end user might
purchase different access rates for different databases in its
account, then the QoS key can be the combination of the user
identification and the database name.

V. EVALUATION

In this section, we study the performance characteristics of
Janus, with a focus on the vertical and horizontal scalability
of the request router and the QoS server layer. Due to page
limits we do not present results on the database layer because
(a) it sits at the tail of the QoS system, (b) it receives only a
very small amount work workload, and (c) it does not have a
significant impact on the performance of the QoS system.

Our evaluation study is carried out on AWS and involves a
variety of EC2 instance types with a web application. Table I
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Fig. 5: Gateway Load Balancer vs DNS Load Balancer.

describes the configuration of the various EC2 instance types
being used in the evaluations. The largest test setup include 15
EC2 instances with a total number of 200 vCPU cores. When
gateway load balancing is used, the load balancer layer is an
ELB with an HTTP listener. The database layer is a r3.2xlarge
RDS MySQL instance with a Multi-AZ master-standby high-
availability configuration. There are 100 M QoS keys in the
database, each QoS key is associated with a different QoS rule
ranging from 1 request per second to 10 K requests per second.
The size of the test data in the database is approximately
10 GB, which is significantly less than the 61 GB memory
available on the RDS instance.

To generate workload on Janus, the client side includes a
dedicated EC2 instance fleet with ten c3.8xlarge nodes. The
clients run a modified version of the Apache HTTP server
benchmarking tool (which is commonly known as “ab”) to
generate a large amount of concurrent QoS requests with
different QoS keys. To understand the results obtained from
these tests, we refer to the web service test results reported by
Zhao et. al. [9] in 2016.

A. Load Balancer

This evaluation compares the performance difference be-
tween the gateway load balancer and the DNS load balancer. In
order to do this, we use two c3.8xlarge nodes in the QoS server
layer and two c3.8xlarge nodes in the request router layer. In
the case of gateway load balancer, we use an ELB with an
HTTP listener and Janus is represented by the DNS endpoint of
the ELB. In the case of DNS load balancer, we use the Amazon
Router53 DNS service and Janus is represented by a domain
name whose A record contains the IP addresses of the two
request router nodes. On two separate c3.8xlarge nodes, we
run a QoS client in a single-thread fashion, creating a modest
workload at approximately 1000 requests per seconds. Each
QoS client makes 100,000 QoS requests to Janus and records
the round-trip latency of each QoS request.

Figure 5 presents the results from the load balancer tests.
For the DNS load balancer, the average latency is 1140
microseconds and 90% of the QoS requests (P90) are served
within 1410 microseconds. For the gateway load balancer,
the average latency is 1650 microseconds and 90% of the
QoS requests are served within 2370 microseconds. Similar
performance difference are observed in the P99 and P99.9
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Fig. 6: Minimum and maximum key pressure for 500,000 QoS
keys across 20 QoS servers behind the Request Router layer.

metric. On average, using the gateway load balancer adds
approximately 500 microsecond to the round-trip latency, as
compared to the DNS load balancer.

In this case of gateway load balancer, the QoS client
establishes an HTTP connection to one of the load balancer
nodes. The load balancer node puts the connection from the
QoS client on hold, then establishes another connection to the
request router for QoS check. When the load balancer receives
a response from the request router, it passes the response back
to the QoS client, then closes the connection with the request
router. As such, the elevated level of latency shown in Figure
5 is caused by the additional TCP connection initiated by the
load balancer node.

The problem with DNS load balancing is that by default
most operating systems cache DNS resolution results until the
time-to-live (TTL) property of the DNS record expires. In
our evaluations we set the TTL property of the Janus DNS
endpoint to 30 seconds. We observe that QoS requests from
the same client node always hit the same request router node
within the TTL cycle, resulting in imbalanced workload in the
request router layer. This can become a serious problem when
the number of request router nodes is more than the number
of client nodes. If there are M request router nodes and N
client nodes (M > N ), during a TTL cycle there are only
N request router nodes receive QoS requests, while the other
request router nodes are idling. Such skewness in workload
distribution significantly out-weights the 500 microsecond gain
in round trip latency.

In the case of gateway load balancing, the above-mentioned
problem does not exist because the gateway load balancer
can be configured to route traffic using various algorithms. In
our evaluations we use a round robin algorithm to distribute
the QoS requests to the request router nodes behind the
ELB. We observe a uniform distribution of workload across
all request router nodes. Furthermore, using the ELB brings
significant benefit in the management of Janus. In particular,
the request router layer can be managed by an Auto Scaling
group, where the capacity of the request router layer can be
automatically adjusted based on a variety of metrics such as
the average latency observed on the load balancer, the average
CPU utilization on the request router nodes, etc. Therefore,
we continue to use the gateway load balancing approach in
our subsequent evaluations.
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Fig. 7: Vertical scalability of the Request Router.

0	

20	

40	

60	

80	

100	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Re
qu

es
ts
	p
er
	S
ec
	(x
	1
03
)	

	

Number	of	Nodes	

(a) Throughput

0	

20	

40	

60	

80	

100	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

CP
U
	U
%l
iz
a%

on
	(%

)	

Number	of	Nodes	

Request	Router	

QoS	Server	

(b) CPU Utilization

Fig. 8: Horizontal scalability of the Request Router.
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Fig. 9: Vertical vs horizontal scalability of the Request Router.

In our figures we do not present the CPU utilization for
the database server because it is well below 1% through out
our evaluation. Other resource consumptions such as disk I/O
and network I/O are also very low. This is also true for all
subsequent evaluations presented in this paper.

B. Request Router

In a partitioned distributed system it is important that the
workload is evenly distributed across all the partitions in the
system. To evaluate the effectiveness of the above-mentioned
request routing algorithm, we calculate the distribution of
500,000 QoS keys in a QoS system with 20 QoS servers
behind the request router. In this evaluation we simulate four
different types of QoS keys, including (a) randomly gener-
ated UUID’s in “xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx”
format, (b) randomly generated date time string in “YYYY-
MM-DD-HH-MM-SS” format, (c) unique words from the
English vocabulary, and (d) sequential numbers starting from
1500000001 to 1500500000. Assuming that each QoS server
receives equal workload from the request router then its key
pressure should be 5% of the total workload. As shown in
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Figure 6, among all four categories, the minimum key pressure
is 4.933% and the maximum key pressure is 5.065%, while
the standard deviations are smaller than 0.03%. Therefore,
the request routing algorithm is capable of evenly distributing
incoming QoS requests across all the QoS servers behind the
request router.

To evaluate the vertical scalability and horizontal scalability
of the request router layer, we need to ensure a fixed processing
capacity in the QoS server layer. This is achieved by provi-
sioning a single c3.8xlarge node in the QoS server layer. To
understand how vertical scaling affects the performance of the
request router, we use a single node in the request router layer
and change the instance type of the request router node. To
understand how horizontal scaling affects the performance of
the request router, we use a fixed instance type (c3.xlarge) for
the request router node and change the number of nodes in the
request router layer.

Figure 7 presents the results from the vertical scaling tests.
As shown in Figure 7a, the processing capacity (throughput)
of Janus increases when the size of the request router node
becomes bigger. As shown in Figure 7b, when the request
router node is small (c3.large and c3.xlarge), the CPU resource
on the request router is depleted under heavy workload.
When the request router node becomes bigger (c3.2xlarge and
beyond) we observe some minor CPU underutilization. When
the request router layer has sufficient processing capacity, the
pressure is shifted to the QoS server layer, which is reflected
in the increase in CPU utilization on the QoS server.

Figure 8 presents the results from the horizontal scaling
tests. As shown in Figure 8a, the processing capacity (through-
put) of Janus linearly increases when the number of the request
router nodes increases. The processing capacity stops growing
when there are more than 8 nodes in the request router layer,
indicating the processing capacity of the QoS server might
be the bottleneck. We notice that the maximum throughput
in Figure 7a is very close to the maximum throughput in
Figure 8a, which supports the speculation that the QoS server
is the bottleneck. Figure 8b shows the CPU utilization on
both the request router nodes and the QoS server node. As
the number of nodes in the request router layer increases,
the CPU utilization on each request router node decreases.
Accordingly, the QoS server node now receives more traffic,
hence the increase in its CPU utilization.

Figure 9 compares the performance of vertical scaling
and horizontal scaling for the request router layer. With the
same amount of vCPU cores in the request router layer, Janus
achieves approximately the same throughput, regardless of the
scaling technique being used.

During our testings we observe on the request router
nodes a large number of TCP/IP connections in TIME WAIT
state. This is commonly considered as an issue that im-
pacts the performance of client-server applications with very
high concurrency. Various researchers [10], [11] suggested
to reduce the value of net.ipv4.tcp fin timeout and enable
net.ipv4.tcp tw recycle and net.ipv4.tcp tw reuse. We exper-
iment with the suggested configurations in our tests. We do
observed a reduction in the number of TCP/IP connections
in TIME WAIT state, but we do not observe any significant
performance improvements.
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Fig. 10: Vertical scalability of the QoS Server.
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Fig. 11: Horizontal scalability of the QoS Server.

0	

25	

50	

75	

100	

125	

0	 10	 20	 30	 40	

Re
qu

es
ts
	p
er
	S
ec
	(x
	1
03
)	

vCPU	Cores	

Ver,cal	Scaling	

Horizontal	Scaling	

Fig. 12: Vertical vs Horizontal scalability of the QoS Server.

C. QoS Server

This evaluation includes both the vertical scalability and
horizontal scalability of the QoS server layer. To provide a
fixed processing capacity in the request router layer, we deploy
5 c3.8xlarge nodes in the request router layer. To understand
how vertical scaling affects the performance of the QoS server,
we use a single node in the QoS server layer and change
the instance type of the QoS server node. To understand how
horizontal scaling affects the performance of the QoS server,
we use a fixed instance type (c3.xlarge) for the QoS server
node and change the number of nodes in the QoS server layer.

Figure 10 presents the results from the vertical scaling tests.
As shown in Figure 10a, the processing capacity (throughput)
of Janus increases when the size of the QoS server node be-
comes bigger. As shown in Figure 10b, there is significant CPU
underutilization on both the request router layer and the QoS
server layer. The CPU underutilization on the request router
layer is expected, because we intentionally provision more
processing capacity than needed. The CPU underutilization on
the QoS server layer is largely due to the implementation of
the locking mechanism being used to manage the QoS rules
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in the local QoS table. This can be further optimized in our
future work.

Figure 11 presents the results from the horizontal scal-
ing tests. As shown in Figure 11a, the processing capacity
(throughput) of Janus linearly increases when the number of
the QoS server nodes increases. Figure 11b shows the CPU
utilization on both the request router nodes and the QoS
server nodes. As the number of nodes in the QoS server layer
increases, the whole system is now capable of handling more
traffic, hence the increase in the CPU utilization on request
router nodes. At the same time, by distributing the workload
across multiple QoS server nodes, each QoS server node now
receives less traffic, hence the decrease in the CPU utilization
on the QoS server nodes.

Figure 12 compares the performance of vertical scaling
and horizontal scaling for the QoS server layer. With the same
amount of vCPU cores in the QoS server layer, Janus achieves
slightly higher throughput when vertical scaling is used. How-
ever, vertical scaling cannot scale indefinitely, because the
largest instance type being used in this evaluation has only
32 vCPU cores. By adding more nodes to the QoS server
layer, horizontal scaling can achieve higher throughput than
vertically scaling to the biggest instance type.

D. Application Integration

In the application integration evaluations, the photo sharing
web application is deployed behind an ELB, with 5 c3.xlarge
web server nodes in the back end. The web server is Apache
version 2.4.18 and PHP version 7.0. The Memcached server is
a dedicated r3.large node with Memcached version 1.5.4. The
MySQL server is another dedicated r3.large node with MySQL
server version 5.7. Janus is deployed behind another ELB, with
2 c3.xlarge nodes in the request router layer and 2 c3.xlarge
nodes in the QoS server layer. The test client accesses the web
application in a multi-thread fashion with an access rate of 130
requests per second, with an intentionally added noises.

In one of the tests, the test client runs on an EC2 instance
with a known IP address. The custom QoS rule defines a
refill rate of 100 requests per second, and a bucket capacity of
1000 requests. In the other test the test client runs on an EC2
instance without a known IP address. The default QoS rule
defines a refill rate of 10 requests per second, and a bucket
capacity of 100 requests. As shown in Figure 13a, when the
custom QoS rule is used, the client is capable of achieving
130 requests per second for an extended period of time without
being throttled. Because the consuming rate from the test client
is greater than the refill rate, the leaking bucket is gradually
depleted. After that the test client is only able to access the
web application at 100 requests per second and the additional
requests are throttled. When the default QoS rule is used, the
consuming rate is far greater than the refill rate, and the leaking
bucket is quickly depleted in a couple of seconds. After that
the test client is only able to access the web application at 10
requests per second and the additional requests are throttled.

Figure 13b presents the round-trip latency metrics as
measured from the test client. Before QoS integration, 90%
of the requests are served in 27 milliseconds (P90). With
QoS integration, 90% of the successful requests are served
in 30 milliseconds, while the rejected requests are throttled
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Fig. 13: Application integration tests.

in 3 milliseconds. Similar trends are also observed in the
P99 and P99.9 metrics. That is, QoS integration does not
significantly impact the performance of successful requests,
while the rejected requests are throttled in a timely manner.

VI. RELATED WORK

QoS itself is a mature subject in literature and has been
applied to a variety of subjects in information and communi-
cations technology [12], [13]. The leaky bucket algorithm [8]
was widely used in routing [14], [15], [16], [17], switching
[18], [19], traffic shaping [20], and defense [21] as an integral
part of the firmware running on the router, switch, firewall, or
load balancer. In recent years, there have been a vast amount
of research effort on applying QoS principles to applications
and services such as gaming [22], multimedia [23], cloud
computing [24], [25], [26], [27], [28], and service-oriented
computing [29]. The majority of existing literature focuses on
improving QoS performance on a single node.

Kim et. al. [4] propose a network QoS control framework
for converged fabrics that automatically programs multiple
router devices with the necessary QoS parameters, leveraging
a set of QoS extensions of OpenFlow APIs. Chen et. al [3]
propose a scalable QoS multicast routing protocol (SoMR)
by carefully selecting the network sub-graph in which it
searches for a path that can support the QoS requirements.
The operations of SoMR are decentralized and rely only on
the local state stored at each router.
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Papazoglou et. al. [5], [6], [7] point out that QoS is an im-
portant research direction in service-oriented computing. The
authors recognize that traditionally QoS quantifies the degree
to which applications and systems support the availability of
services at a required performance level. The authors further
points out that service-oriented computing demands higher
availability and introduces increased complexity. As such,
QoS “encompasses important functional and non-functional
attributes such as performance metrics, security attributes,
transactional integrity, reliability, scalability, and availability”.

The request router approach has been extensively used in
developing scalable systems. For example, Anderson et. al.
[30] use the request router technique to perform routing for
a scalable network storage system. Gritter et. al. [31] use
the request router technique to scale content delivery on the
Internet. Lakshman et. al. [32] report that the request router
technique is used in Cassandra, a decentralized structured
storage system. Nishtala et. al. [33] report that Facebook uses
the request router technique to scale its Memcache cluster.
In general, such workload is considered read-intensive, and is
quite different from the write-intensive QoS discussed in this
paper.

In the area of parallel and distributed systems, researchers
seem to favor TCP over UDP in communication due to
the reliability offered by the TCP protocol. However, there
have been some successful adoption of UDP in parallel and
distributed systems. For example, He et. al [34] use UDP to
achieve predictable high-performance bulk data transfer for
data-intensive scientific applications.

VII. CONCLUSION

In this paper, we present the design and implementation of
Janus - a generic and scalable QoS framework for admission
control purposes. In Janus, we introduce a multi-layer design,
which includes a load balancer layer, a request router layer, a
QoS server layer, and a database layer. The request router layer
segregates incoming QoS requests into multiple independent
partitions, where each partition is represented by a QoS server.
The request routing algorithm is effective in evenly distributing
QoS requests to the QoS server nodes behind the request router
layer. The QoS server is a distributed set of leaky buckets with
a refill mechanism. This provides accurate admission control
according to the quota the user purchases, but still allows
occasional burst operations when the user accumulates credit.
In our evaluations we demonstrate that Janus achieves linear
scalability both vertically and horizontally. For example, Janus
achieves more than 100,000 requests per second with only 40
vCPU cores in the QoS server layer.

In Janus, we adopt a key-value request-response mecha-
nism so that it can be made generically available to a variety of
devices, applications, and systems. We use a photo sharing web
application to demonstrate that Janus can be easily integrated
with existing web applications.90% of the admission control
decision were made in 3 milliseconds, which is only a small
overhead as compared with the application’s own latency. The
horizontal scalability of various layers, the painless integration
process, plus the very low latency overhead, prove that Janus
can be used to provide QoS service for a wide range of SaaS
applications.
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