
Scalable Video Transcoding in Public Clouds

Qingye Jiang
School of Computer Science

The University of Sydney

Sydney NSW 2006, Australia

Email: qjiang@ieee.org

Young Choon Lee
Department of Computing

Macquarie University

Sydney NSW 2109, Australia

Email: young.lee@mq.edu.au

Albert Y. Zomaya
School of Computer Science

The University of Sydney

Sydney NSW 2006, Australia

Email: albert.zomaya@sydney.edu.au

Abstract—In this paper, we present the challenges involved
in large-scale video transcoding application in public clouds. We
introduce the architecture of an existing video transcoding system
which is tightly coupled with an existing video sharing service.
We examine the horizontal scalability of the video transcoding
system on AWS EC2. With an online transaction processing
(OLTP) model, the system achieves linear horizontal scalability
up to 1,000 vCPU cores, but starts to experience performance
degradation beyond that. We analyze the resource consumption
pattern of the existing system, then introduce an improved
architecture by adding a message queue layer. This effectively
decouples the video transcoding system from the video sharing
service and converts the OLTP model into a batch processing
model. Large-scale evaluations on AWS EC2 indicate that the
improved design maintains linear horizontal scalability at 10,100
vCPU cores. The hybrid design of the system allows it to be
easily adapted for other batch processing use cases without the
need to modify or recompile the application.

Index Terms—video transcoding, batch processing, distributed
computing, horizontal scalability

I. OVERVIEW

Video transcoding is a common use case for websites and

mobile applications providing video sharing service. When

an end user uploads a video for sharing, the uploaded video

comes with a particular file format, resolution, and bitrate. To

provide the best user experience for the viewers, the service

provider often needs to convert the same video into different

file format, resolution, and bitrate so that it can be delivered

to different devices with different runtime environments over

different network connectivity conditions.

Video transcoding is one of the many features of the

video sharing service. In the academic world, scalable video

transcoding systems use either MPI or MapReduce as the

distributed computing technique. In the industry, scalable

video transcoding systems are usually coupled with the video

sharing service in some way, including obtaining transcoding

jobs from and updating transcoding status back to a core

database. In both cases, these systems exhibit linear horizontal

scalability at small scale, but starts to experience performance

degradation at large scale. Such performance degradation often

occurs when the resource consumption on the database server

is very low, making it very difficult to debug and improve.

In this paper, we present the challenges involved in large-

scale video transcoding systems. We analyze an existing video

transcoding system, which is tightly coupled with an existing

video sharing service through a shared database. The system

achieves linear horizontal scalability up to 1,000 vCPU cores,

but start to experience performance degradation beyond 1,000

vCPU cores. By examining the resource consumption pattern

of the existing system, we improve the system by introduc-

ing a message queue layer. Such slight change converts the

tightly coupled situation into a loosely coupled situation, from

an online transaction processing (OLTP) model to a batch

processing model. This effectively improved the horizontal

scalability of the video transcoding system. Futhermore, we

introduced a hybrid design that includes a Java application

and a bash script. The Java application forms the batch

processing framework, while the bash script performs the

actual transcoding work. The specific contributions of this

paper include:

• We present a scalable video transcoding system with

a producer/consumer model. Large-scale evaluations on

AWS EC2 indicate that the scalable video transcoding

system maintains linear horizontal scalability at 10,100

vCPU cores.1 This is by far the largest video transcoding

system that has been reported.

• The hybrid design of the system allows it to be easily

adapted for other batch processing use cases without the

need to modify or recompile the application.

The rest of this paper is organized as follows. Section II

describes the use case, the test data, and the test environment.

Section III describes the performance metrics of the existing

system, along with an analysis on the resource consumption

pattern and possible bottlenecks. Section IV describes the

improved architecture and implementation, following by how

large-scale performance evaluations in Section V. Section VI

reviews related work. We conclude our paper in Section VII.

II. APPLICATION SCENARIO

Figure 1 illustrates the application scenario of the video

transcoding system. When the end user uploads a video to

the video sharing service, the video is stored in a bucket on

Amazon Simple Storage Service (S3) and a new record is

inserted to a table in a relational database, with the transcoding

status set to PENDING. When the total number of videos

in PENDING status reaches a certain threshold, a group of

1To allow other researchers to reproduce our test results, the source
code and test data is made available on GitHub https://github.com/qyjohn/
ScaleTranscoder.

70

2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)

978-1-7281-0912-1/19/$31.00 ©2019 IEEE
DOI 10.1109/CCGRID.2019.00017

Fig. 1: Architecture of the Existing Video Transcoding Appli-

cation.

transcoder nodes (Amazon EC2 instances) are launched to

transcode the uploaded videos. The video transcoding system

employs a stateless design in that (a) a transcoder node does

not persist any job state on itself, and (b) the transcoder nodes

are not aware of each other and do not communicate with

each other in any way. On each transcoder node, multiple

threads are launched to do the actual work, where the number

of threads equals to the number of vCPU cores available on the

transcoder node. Each thread performs the following tasks in

sequence: (a) obtains one record with PENDING status from

the MySQL database at a time, (b) updates the corresponding

record with the status set to PROCESSING to avoid other

worker threads from working on the same video clip, (c)

downloads the video clip from S3 to local disk, (d) uses

FFmpeg 1 to convert the video clip from MP4 format to WMV

format, (e) uploads the output file from local disk back to the

same S3 bucket, (f) deletes both the MP4 and WMV files from

local disk, and (g) updates the corresponding record with the

status set to COMPLETED. This process continues until the

status of all records in the database become COMPLETED.

We use 1,000,000 video clips to evaluate the performance of

the video transcoding system. These video clips are replicated

from 20 original video clips with lengths from 6 seconds to

117 seconds. For each original video clip we create 50,000

replicas, representing 5% of the total workload. The records

of these video clips are evenly distributed in the table space,

simulating a large-scale video sharing service on which a large

group of users sharing short videos taken from different mobile

devices. Table I provides a detailed description of the video

clips used in the evaluation. For each video clip, a UUID is

generated and used as the object key, which “hints” S3 to

distribute the video clips to multiple partitions for improved

performance. The video clips are pre-staged onto S3, and the

corresponding records are pre-inserted into the database. The

size of the table (with the corresponding index) is 260 MB,

which is significantly smaller than the memory available on the

database server (60 GB). Before we start the video transcoding

system, we pre-load all the data into memory with a “SELECT

* FROM jobs” query. As a result, all database operations

are performed against in-memory data, apart from persisting

updated data to the underlying storage.

1https://www.ffmpeg.org

TABLE I: Video Clips for Testing.

Video Clip
Length

(seconds)
MP4 Size

(bytes)
WMV Size

(bytes)

01 6 558708 369095
02 12 1,141,455 644,331
03 18 1,746,849 916,367
04 24 2,333,556 1,188,403
05 30 2,906,927 1,457,239
06 36 3,487,456 1,726,075
07 42 4,073,664 1,994,911
08 48 4,665,068 2,273,347
09 54 5,250,610 2,542,183
10 60 5,847,580 2,811,019
11 66 6,455,206 3,083,055
12 72 7,048,175 3,355,091
13 78 7,626,107 3,623,927
14 84 8,215,317 3,892,763
15 90 8,824,693 4,164,799
16 96 9,419,633 4,436,835
17 102 9,997,732 4,705,671
18 108 10,585,186 4,977,707
19 114 11,182,329 5,246,543
20 117 11,451,138 5,368,155

We carry out the evaluations on AWS in the ap-southeast-2

(Sydney) region. The c3.8xlarge EC2 instance type is used

exclusively in the evaluation of the original system. The

EC2 instance has 32 vCPU cores, 100-GB General-Purpose

SSD root EBS volume, 60 GB memory, with the advertised

network bandwidth being 10 Gbps. The operating system is

64-bit Ubuntu 18.04.1 LTS, and the file system is EXT4.

The database is MySQL release version 5.7.24 running on a

dedicated EC2 instance. The S3 bucket used to store the video

clips is created in the same AWS region. In the evaluations

we deploy the video transcoding system in an auto-scaling

group, with the transcoder nodes being launched in multiple

availability zones. This allows us to easily change the number

of transcoder nodes when needed.

III. PERFORMANCE METRICS OF THE ORIGINAL SYSTEM

Figure 2 presents a 1-minute sampling of the resource

consumption pattern on the transcoder node when there is only

one transcoder node in the system, with the sampling period

being 1 second. The transcoding application utilizes over 90%

of the CPU resource (Figure 2a) most of the time. The small

system utilization (sys) reflects the context switch between

multiple threads. There is also some slight idle CPU time,

but there is absolutely no iowait observed (Figure 2b). Disk

writes occur in a burst pattern, with no disk reads observed

(Figure 2c). The amount of network receive (net rx) is slightly

higher than network transmit (net tx), because the size of the

source video clip is bigger than the size of the transcoded

video clip (Figure 2d). In summary, the application is compute-

intensive, with no significant pressure on either disk I/O or

network I/O. This makes it an ideal use case for the horizontal

scaling technique – that is, increasing the combined processing

capacity of a system by adding more nodes into the system.

The performance of the video transcoding system is mea-

sured by its transcoding speed, which is the number of video

71

(a) CPU (usr) (b) CPU (sys, idle, iowait)

(c) Disk I/O (d) Network I/O

Fig. 2: Resource Consumption Pattern on the Transcoder

Node.

Fig. 3: Performance Growth of the Original Video Transcoding

System.

clips processed in a minute. Figure 3 presents the relation-

ship between performance and the number of nodes in the

transcoder fleet. At a first glance the system exhibits per-

fect linear horizontal scaling behavior. However, performance

degradation occurs when there are more than 32 transcoder

nodes (1,032 vCPU cores) in the fleet. Starting from this

point, adding more transcoder nodes into the fleet results in

performance decreases instead of performance increases.

With a stateless design, the transcoder nodes do not have

any direct performance impact on each other. As such, the ob-

served performance degradation suggests insufficient comput-

ing capacity on the coordinating node, which is the database.

Figure 4 presents the resource consumption pattern observed

on the database node, where each data point represents the

average level of resource consumption observed over a 1-

minute sampling period with a 1-second sampling interval.

Surprisingly, CPU resource is idling most of the time (Figure

4a). In the worse case, the database server only consumes less

than 3% CPU time (usr), with approximately the same level

of iowait (Figure 4b). There is up to 4 MB/s in disk writes and

no disk reads (Figure 4c), which is very small comparing to

the level of disk I/O observed on the transcoder node (Figure

2c). Both network transmit and network receive throughput are

very low, and they correlate well with the transcoding speed

as shown in Figure 3.

(a) CPU (idle) (b) CPU (usr, iowait, sys)

(c) Disk I/O (d) Network I/O

Fig. 4: Resource Consumption Pattern of the Database Node.

The fact that iowait occurs when the disk I/O throughput

is low suggests that the database server is making a large

number of small I/O requests. The General-Purpose SSD EBS

volume can consistently deliver 3 IOPS per GB 1. When the

root EBS volume is 100 GB, it is capable of performing 300

I/O operations per second. As shown in Figure 3, the video

transcoding system is capable of processing approximately

10,000 video clips per minute, which is 166 video clips per

second. Assuming two disk I/O requests on the database

node are needed to process each video clip, it demands

approximately 330 IOPS from the root EBS volume. These

two disk I/O requests correspond to two database updates

in the transcoding job, one to change the status of a record

to PROCESSING, and the other to change the status of the

same record to COMPLETED. When the video transcoding

system creates more disk I/O requests (by adding transcoder

nodes to the fleet) than the disk I/O capacity available on

the database node, the disk I/O requests queues up on the

operating system level, resulting in the iowait observed. As a

consequence, the performance of the video transcoding system

starts to deteriorate.

The above-mentioned mechanism suggests that the video

transcoding system is tightly coupled with the video sharing

service through the database. By using the database as the

job coordination layer, the video transcoding system has the

same workload characteristics as an OLTP system. At a first

glance this seems to be an easy problem to solve. A larger

EBS volume can provide higher disk I/O capacity, hence

performance gain can be achieve by using a larger EBS volume

on the database server. However, there are some well-known

issues with such approach. Firstly, there exists a 16,000 IOPS

hard limit for a single EBS volume. Secondly, currently we are

only utilizing less than 1% out of the 100-GB storage capacity,

1https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.
html

72

Fig. 5: Architecture of the Improved Video Transcoding Ap-

plication.

provisioning more storage capacity to provide greater disk I/O

capacity is not economically feasible. As such, an improved

architecture is needed to solve the performance issue with the

video transcoding system.

IV. IMPROVED ARCHITECTURE

Figure 5 presents the architecture of the improved video

transcoding system. By adding a message queue layer between

the database and the transcoder nodes, we decouple the video

transcoding system from the database. This also converts the

architecture from an OLTP system into a batch processing

system. Upon start up, a job coordination program performs

a SELECT query to retrieve all records in PENDING state

and publishes them into the message queue as jobs pending

processing. With a producer/consumer design, the transcoder

nodes consume jobs from the message queue, process the

corresponding video clips, and acknowledge to the message

queue when jobs are completed. The job coordination program

checks the message queue for completed jobs with a 1-

second interval, then updates the corresponding records in the

database with the status set to COMPLETED. To reduce the

volume of disk I/O requests, the database updates are make in

batches.

In our implementation, the message queue is RabbitMQ

3.6.9 and it runs on the same server as the database. In

general, message queue is a memory-intensive application.

However, the size of the data set (260 MB) is significantly

smaller than the memory available on the database server

(60 GB). Considering the resource abundance on the database

server, the job coordination program also runs on the database

server. Apart from the video transcoding fleet, the improved

architecture does not require additional nodes in the system.

The application running on the transcoder nodes adopts

a hybrid approach. The application receives job description

from the message queue in the form of strings, then calls a

bash script execute.sh with the string as the runtime parameter

(Figure 6). The bash script then performs the actual work

(Figure 7), including (a) downloading the MP4 video clip

from S3, (b) use FFMPEG to perform the transcoding, and

(c) uploading the WMV video clip to S3. After the bash

script finishes execution, the application acknowledges back

to the message queue that this particular job is completed.

This architecture can be easily extended to a variety of other

use cases by simply modifying the bash script, without the

need to modify or recompile the application itself.

public void execute(String jobInfo){
try{

// execute a particular job
String cmd = ”˜/bin/execute.sh ” + jobInfo;
Process proc = Runtime.getRuntime().exec(cmd);
proc.waitFor();

} catch (Exception e){}
}

Fig. 6: Jobs obtained from the message queue is processed by

calling a external bash script.

#!/bin/bash
s3Bucket=my s3 bucket
src=/tmp/$1.mp4
dst=/tmp/$1.wmv
aws s3 cp s3://$s3Bucket/$1.mp4 $src
ffmpeg −i $src $dst
aws s3 cp $dst s3://$s3Bucket/$1.wmv
rm $src $dst

Fig. 7: The external bash script performs the actual transcoding

job. This script can be easily modified to handle jobs in other

use cases.

V. PERFORMANCE METRICS OF THE IMPROVED SYSTEM

Due to EC2 instance quota limits, we use a combination

of c3.8xlarge, c4.8xlarge and c5.9xlarge instance types in this

evaluation. Table II describes the configuration of the different

instance types in details. It should be noted that these instance

types have different CPU’s with different performance. We

use the publicly available PassMark scores to represent the

performance of the CPU. The c4.8xlarge instance type has

a more powerful CPU than c3.8xlarge, while the c5.9xlarge

instance type has a more powerful CPU than c4.8xlarge. Also,

each instance type has different number of vCPU cores and

memory configuration.

Due to cost considerations, the large-scale evaluation is

carried in multiple stages with different step sizes. In the

first stage, we use the c3.8xlarge instance type and increase

the number of transcoder nodes from 0 to 100 (3,200 vCPU

cores), with a step size of 5 nodes. In the second stage, we

use the c3.8xlarge instance type and increase the number of

transcoder nodes from 100 to 200 (6,400 vCPU cores), with

a step size of 10 nodes. In the third stage, we use a mixture

of all three instance types to scale the number of transcoder

nodes from 200 to 300 nodes (10,100 vCPU cores), with

a step size of 50 nodes. The last three data points in the

subsequent analysis represent results obtained from transcoder

fleets with (100, 50, 50), (125, 50, 75) and (175, 45, 80)

instances for the (c3.8xlarge, c4.8xlarge, c5.9xlarge) instance

types. To account for the difference in the number of vCPU

73

TABLE II: Configuration of EC2 Instances. The PassMark scores are obtained from https://www.cpubenchmark.net/.

Instance Type CPU Type PassMark Score vCPU Cores Memory (GB) SSD Storage (GB)
c3.8xlarge Intel Xeon E5-2680 v2 @ 2.8 GHz 15877 32 60 100
c4.8xlarge Intel Xeon E5-2666 v3 @ 2.9 GHz 24877 36 60 100
c5.8xlarge Intel Xeon Platinum 8124M @ 3.0 GHz 26652 36 72 100

(a) CPU (usr) (b) CPU (sys, idle, iowait)

(c) Disk I/O (d) Network I/O

Fig. 8: Resource Consumption Pattern on the Transcoder

Node.

Fig. 9: Performance Growth of the Improved Video Transcod-

ing Application.

cores on the transcoder nodes, we use the number of vCPU

cores to represent the size of the transcoder fleet.

Figure 8 presents a 1-minute sampling of the resource

consumption pattern on the transcoder node when there is

only one transcoder node (c3.8xlarge) in the system. The video

transcoding application utilizes over 90% of the CPU resource

(Figure 8a), with some small system utilization (sys) and idle

time and no iowait (Figure 8b). Disk writes are very low,

with no disk reads observed (Figure 8c). Network transmit

(net tx) and receive (net rx) throughputs are on the same level

as disk write throughput (Figure 8d). In summary, the resource

consumption pattern on the improved transcoder node is very

similar to that on the original transcoder node as described in

Figure 2.

Figure 9 presents the relationship between performance and

the number of vCPU cores in the transcoder fleet. There are

up to 10,100 vCPU cores in the transcoder fleet, with up to

18,960 GB memory. The improved video transcoding system

(a) CPU Utilization (b) CPU Utilization

(c) Disk Writes (d) Network I/O

Fig. 10: Resource Consumption Pattern on the Database Node.

exhibits a good linear horizontal scaling behavior throughout

the evaluation. The sudden performance jump observed at

vCPU=6800 is due to the introduction of more powerful CPU’s

on the c4.8xlarge and c5.9xlarge instance types. Throughout

the evaluation, no performance degradation is observed. This

proves that the improved architecture is effective in achieving

higher performance by (a) decoupling the video transcoding

system from the database, and (b) replacing the OLTP model

with the batch processing model.

Figure 10 presents the resource consumption pattern ob-

served on the database node, where each data point represents

the average level of resource consumption observed over a

1-minute sampling period with the sampling interval being

1 second. CPU resource is idling most of the time (Figure

10a). In the worse case, the database server only consumes

less than 3% CPU time (usr), with no iowait observed (Figure

10b). There is less than 0.04 MB/s in disk writes and no disk

reads (Figure 10c). Both network transmit and network receive

throughput are very low (Figure 10d), and they correlate well

with the transcoding speed as shown in Figure 9.

With the improved architecture described in Section IV, this

system can be easily extended to a variety of other batch

processing use cases by simply modifying the bash script,

without the need to modify or recompile the application itself.

On the worker node level, the bash script implementation

is stateless in that it does not store job states on the node

or communicate job states with other worker nodes. On the

system level, the producer/consumer architecture facilitated by

a message queue allows the system to be horizontally scalable.

As demonstrated by the video transcoding use case, the system

74

does not experience any performance degradation at 10,100

vCPU cores.

VI. RELATED WORK

Video transcoding has been a thoroughly researched topic

in multimedia and signal processing. Vetro et. al. [1] review

the various techniques in the transcoding of block-based video

coding schemes, with a focus on bitrate reduction, spatial and

temporal resolution reduction, as well as error resilience in

video transcoding. Xin et. al. [2] outline technical issues in

video transcoding, with a focus on reducing transcoding com-

plexity and improving video quality by exploiting information

obtained from the source video bit stream. Ahmad et. al. [3]

review various video transcoding architectures and discuss

the trade-off between the computational complexity and the

quality of the reconstructed video.

Sambe et. al. [4] present the design and implementation of

a video transcoding cluster with a master/slave architecture.

Small-scale evaluations on a cluster with up to 10 nodes

indicate a none-linear relationship between performance and

the number of nodes. Pereira et. al. [5], Garcia et. al. [6] and

Zhao et. al. [7] propose using MapReduce as the distributed

computing technique for building scalable distributed video

transcoding systems. Fareed [8] proposes a scalable distributed

video transcoding system based on MPI, where the cluster

includes a master node and multiple worker nodes. However,

the scalability of these systems are not reported. Feng et. al.

[9] present a parallel video transcoding system with a MapRe-

duce architecture and verify the viability of the proposed

system with numerical simulations. Kim et. al. [10] propose

a distributed video transcoding system based on the Hadoop

MapReduce framework. The authors conduct evaluations on

Hadoop clusters with up to 28-node (224 vCPU cores). In

this case, linear horizontal scaling behavior is observed for

videos larger than 4 GB, but performance degradation is

observed for videos smaller than 4 GB. Liu et. al. [11], [12]

reported VideoCoreCluster, a low-cost and highly efficient

video transcoder cluster based on Raspberry Pi. A common

characteristics of existing literature is they are relatively small-

scale studies. The largest cluster was reported by Pereira et.

al. [5], with up to 225 vCPU cores in the cluster.

With the increasing adoption of public clouds, dynamic

resource allocation for video transcoding workload becomes

an important issue. Ashraf et. al. [13], [14] present a batch

processing system with a producer/consumer design, where the

job distribution is facilitated by a message queue. The authors

develop a method to predict the video transcoding workload,

then use the prediction to dynamically manage the amount of

computing resources in the video transcoder fleet. Discrete-

event simulation and a small-scale experiment are used to

evaluate the effectiveness of the proposed dynamic resource

allocation algorithm.

VII. CONCLUSION

In this paper, we present the challenges involved in large-

scale video transcoding use cases. We analyze an existing

video transcoding system, which achieves linear horizontal

scalability up to 1,000 vCPU cores, but experiences perfor-

mance degradation beyond 1,000 vCPU cores. By examining

the resource consumption pattern of the existing system, we

redesign and implement the system with a producer/consumer

architecture. Large-scale evaluations indicate that the improved

application maintains linear horizontal scalability at 10,100

vCPU cores. This is by far the largest video transcoding system

that has been reported. The hybrid design of the system allows

it to be easily adapted for other batch processing use cases

without the need to modify or recompile the application.

VIII. ACKNOWLEDGEMENT

Professor Zomaya‘s work is supported by an Australian

Research Council Linkage Grant (LP150101213).

REFERENCES

[1] A. Vetro, C. Christopoulos, and H. Sun, “Video transcoding architectures
and techniques: an overview,” IEEE Signal processing magazine, vol. 20,
no. 2, pp. 18–29, 2003.

[2] J. Xin, C.-W. Lin, and M.-T. Sun, “Digital video transcoding,” Proceed-
ings of the IEEE, vol. 93, no. 1, pp. 84–97, 2005.

[3] I. Ahmad, X. Wei, Y. Sun, and Y.-Q. Zhang, “Video transcoding: an
overview of various techniques and research issues,” IEEE Transactions
on multimedia, vol. 7, no. 5, pp. 793–804, 2005.

[4] Y. Sambe, S. Watanabe, D. Yu, T. Nakamura, and N. Wakamiya, “High-
speed distributed video transcoding for multiple rates and formats,”
IEICE Transactions on Information and Systems, vol. 88, no. 8, pp.
1923–1931, 2005.

[5] R. Pereira, M. Azambuja, K. Breitman, and M. Endler, “An architecture
for distributed high performance video processing in the cloud,” in
Proceedings of the 2010 IEEE 3rd International Conference on Cloud
Computing (CLOUD). IEEE, 2010, pp. 482–489.

[6] A. Garcia, H. Kalva, and B. Furht, “A study of transcoding on cloud
environments for video content delivery,” in Proceedings of the 2010
ACM multimedia workshop on Mobile cloud media computing. ACM,
2010, pp. 13–18.

[7] H. Zhao, Q. Zheng, W. Zhang, and J. Wang, “Prediction-based and
locality-aware task scheduling for parallelizing video transcoding over
heterogeneous mapreduce cluster,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 28, no. 4, pp. 1009–1020, 2018.

[8] F. Jokhio, T. Deneke, S. Lafond, and J. Lilius, “Bit rate reduction video
transcoding with distributed computing,” in Proceedings of the 2012
20th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP). IEEE, 2012, pp. 206–212.

[9] F. Lao, X. Zhang, and Z. Guo, “Parallelizing video transcoding using
map-reduce-based cloud computing,” in Proceedings of the 2012 IEEE
International Symposium on Circuits and Systems (ISCAS). IEEE, 2012,
pp. 2905–2908.

[10] M. Kim, Y. Cui, S. Han, and H. Lee, “Towards efficient design and
implementation of a hadoop-based distributed video transcoding system
in cloud computing environment,” International Journal of Multimedia
and Ubiquitous Engineering, vol. 8, no. 2, pp. 213–224, 2013.

[11] P. Liu, J. Yoon, L. Johnson, and S. Banerjee, “Greening the video
transcoding service with low-cost hardware transcoders,” in USENIX
Annual Technical Conference, 2016, pp. 407–419.

[12] P. Liu, J. Yoon, H. R. Kim, and S. Banerjee, “Videocorecluster: Energy-
efficient, low-cost, and hardware-assisted video transcoding system,”
Wireless Communications and Mobile Computing, vol. 2018, 2018.

[13] A. Ashraf, F. Jokhio, T. Deneke, S. Lafond, I. Porres, and J. Lilius,
“Stream-based admission control and scheduling for video transcoding
in cloud computing,” in Proceedings of the 2013 13th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing (CCGrid).
IEEE, 2013, pp. 482–489.

[14] F. Jokhio, A. Ashraf, S. Lafond, I. Porres, and J. Lilius, “Prediction-
based dynamic resource allocation for video transcoding in cloud
computing,” in Proceedings of the 2013 21st Euromicro International
Conference on Parallel, Distributed and Network-Based Processing
(PDP). IEEE, 2013, pp. 254–261.

75

