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Public cloud users are educated to practice horizontal scaling at the application level, with the assumption

that more processing capacity can be achieved by adding nodes into the server fleet. In reality, however,

applications—even those specifically designed to be horizontally scalable—often face unpredictable scalability

issues when running at scale. In this article, we study the limit of horizontal scaling in public clouds by

identifying sources of such limitations and quantitatively measuring their impact on processing capacity. To

this end, we develop ScaleBench as a distributed and parallel cloud-scale testing framework and propose a

capacity degradation index (CDI) to describe the level of capacity degradation observed in our benchmark

studies. We have conducted extensive experiments in four real public clouds to identify possible bottlenecks

in compute, block storage, networking, and object storage. Further, we carry out large-scale experiments

with a real-life video transcoding application on worker fleets with up to 3200 vCPU cores. Our experimental

results provide the quantitative evidence on the limit of horizontal scaling in public clouds. This helps cloud

users make better design decisions on horizontally scalable applications.
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1 INTRODUCTION

Since the induction of Amazon Web Services (AWS) in 2006, public clouds have been steadily gain-
ing market share in the enterprise computing resource market [22]. Many public clouds advertise
the seemingly “unlimited” resource pool they have, as opposed to the limited computing resource
an ordinary user would have access to in an on-premise environment. Along with the move to pub-
lic clouds is the adoption of horizontal scaling as the recommended technique to handle dynamic
workloads, such as web applications and batch processing jobs. Public cloud service providers also
offer features such as auto scaling, automatically managing the nodes in the worker fleet to meet
workload requirements while avoiding over-provisioning. There is a large body of literature on
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the performance characteristics of computing resource on public clouds. Most of them adopt the
“performance variation” approach [38]—considering resource contention due to multi-tenancy on
the underlying physical host level (noisy-neighbor effect). With the implicit assumption that more
processing capacity can always be achieved by adding nodes into the worker fleet, benchmark
and statistics methods are used to determine the performance variation pattern of the computing
resources, which is then used to design horizontally scalable systems, with the goal to achieve
predictable processing capacity at scale [6].

In reality, very little is known on the limit of the horizontal scaling technique in public clouds.
Although it is commonly agreed that bottlenecks exist in all systems—including public clouds—
regardless of their design and scale. Apart from such implicit awareness that the horizontal scaling
technique can fail, there exists no quantitative study on when and how it will fail. In particular, if
one runs a horizontally scalable application on a particular public cloud, will its capacity continue
to grow as long as more nodes can be acquired from the cloud service provider? Or, will its capacity
will stop growing at some point (i.e., cloud-scale bottlenecks), regardless of any further growth
in the number of nodes in the server fleet? A more practical question is, can such cloud-scale
bottlenecks actually be reached by an ordinary cloud user to the point that the horizontal scaling
technique stops working? If yes, can such cloud-scale bottlenecks be detected so that cloud users
can make proper design decisions as early as possible?

In this article, we attempt to answer these two questions by identifying sources of cloud-scale
bottlenecks and quantitatively measuring their impact on the capacity of horizontally scalable ap-
plications. To this end, we develop ScaleBench as a distributed and parallel benchmark framework.
ScaleBench is capable of generating substantial and sustainable workload on public clouds, simu-
lating the resource consumption pattern of various horizontally scalable applications. In particular,
it detects cloud-scale bottlenecks in compute unit, block storage, networking, and object storage.
In addition, we use a real-life video transcoding application to demonstrate that the horizontal
scaling technique can fail to gain more capacity when such cloud-scale bottlenecks are reached.
The specific contributions of this article include the following:

—We use the parallel execution of the same single-node application on multiple nodes to
simulate a perfectly horizontally scalable application. A combination of serial and parallel
evaluations are used to compare the node level capacity of a single-node system and a multi-
node system. We propose the concept of capacity degradation index (CDI) to describe the
degree of capacity degradation at scale.

—We perform extensive empirical studies on four public clouds.1 We observe significant ca-
pacity degradation in three of them. This confirms that on multiple public clouds, cloud-
scale capacity bottlenecks not only exist, but also can be easily detected by an ordinary
cloud user. With as little as 20 worker nodes, we observe up to 24%, 52%, 14%, and 90%
capacity degradation in overall system performance, block storage, networking, and object
storage, respectively.

—We conduct large-scale experiments using a real-life video transcoding application, where
the largest worker fleet utilizes 3200 vCPU cores. We demonstrate that when the above-
mentioned cloud-scale bottleneck is reached, the capacity of the horizontally scalable ap-
plication stops growing regardless of the growth in the number of nodes.

1It should be emphasized that the intention of this article is not to compare the performance of different public clouds,

although we inevitably need to obtain and report performance benchmark data. To avoid such a misunderstanding, we

deemphasize the cloud service providers by referring to them as Cloud A (AWS in the us-east-1 region), Cloud B (Aliyun

in the China East 2 region), Cloud C (Open Telekom Cloud in the eu-de region), and Cloud D (Huawei Cloud in the China

East 1 region).
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Fig. 1. The architecture of ScaleBench.

The rest of this article is organized as follows. Section 2 describes the design and implementation
of ScaleBench. Section 3 describes the benchmarks on four basic building blocks of cloud-scale
applications. In Section 4, we present and discuss the benchmark results obtained from four public
clouds. In Section 5, we demonstrate how cloud-scale bottlenecks can impact the capacity growth
of horizontally scalable applications, using a real-life large-scale video transcoding application as
an example. Section 6 reviews related work, followed by our conclusions in Section 7.

2 SCALEBENCH

In this section, we present the architecture of ScaleBench and describe its implementation. We
then propose CDI to quantitatively identify cloud-scale bottlenecks.

2.1 Architecture

In large-scale testing, we need to execute the same benchmark application with different run-
time parameters on many nodes in parallel. As shown in Figure 1, ScaleBench employs a pub-
lisher/subscriber architecture, with four major components—the master node, the message queue,
the worker nodes, and the database. The master node is the management node that publishes test
jobs to the message queue. The worker nodes are the nodes being tested, and they subscribe to
the message queue for test jobs to execute. Each worker node executes the test jobs locally, then
generates a test report and writes the report to a database. The job submission application running
on the master node does not need to wait for the test jobs to be completed. Further analysis can
be carried out based on the test reports in the database.

There are two different types of jobs in ScaleBench—node-specific jobs and node-generic jobs.
Node-specific jobs have node id’s in the job definition. They are only executed on worker nodes
with the node id’s specified in the job. Node-generic jobs do not have node id’s in the job definition.
They are executed on all worker nodes. We use the private IP address of the worker node as its
node id, which is unique in a private network. The test definition is described in JavaScript object
notation (JSON) format. The attributes in the job description include (a) the node id, (b) the execu-
tion path (PATH) in which the command/script can be found, and (c) the actual command/script to
execute. Multiple jobs can be packaged into a batch, within which they are executed in sequence
according to the order they appear in the job description. Figure 2 is an example job definition
with two jobs. In this example, the first command “df -h” is executed on all worker nodes, after
that the worker node with IP address 172.31.0.20 executes the second command “ifconfig”.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: February 2020.
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Fig. 2. An example of job definition in ScaleBench.

2.2 System Implementation

ScaleBench is implemented in Java.2 The message queue is RabbitMQ, and the database is MySQL.
In large-scale testing, a virtual machine image is created with the ScaleBench framework, and the
related benchmark applications pre-installed and configured. The image is then used to launch
identical worker nodes for testing. For automation, we take advantage of the cloud-init feature,
which is commonly available on most public clouds. When the worker nodes are launched, the
cloud-init script automatically starts the test agent, which subscribes to the message queue for
jobs to execute. When new software packages or configuration/data files are needed on the worker
nodes, the management node sends the instructions to perform the installation/download in the
form of a sequence of test jobs.

Both RabbitMQ and MySQL run on the master node. The test agent on the worker nodes access
RabbitMQ with a 1-second polling interval to fetch jobs to run. To ensure that there is only one
job running at a time, the test agent stops polling RabbitMQ when a job is running. The test
agent intercepts the job’s stdout and stderr streams, and reports them back to MySQL as the test
result. In our study, it takes minutes to hours to run benchmark jobs on the worker node. As such,
RabbitMQ and MySQL are accessed only occasionally. The maximum workload is N requests per
second, where N equals to the number of worker nodes.

2.3 Capacity Degradation Index (CDI)

The performance of a parallel system is usually measured by speedup (S) and efficiency (E). Speedup
is defined as the ratio of the time needed to perform a certain amount of work on a single node
(T1) to the time needed to perform the same amount of work on n nodes (Tn),

S (n) =
T1

Tn

(1)

Efficiency represents the average utilization of the n nodes in a parallel system. Here, we make
the assumption that a single-node system is fully utilized (efficient = 1). The relationship between
efficiency and speedup is given by

E (n) =
Sn

n
(2)

In benchmark studies, the processing capacity (C) of a system is usually not measured by how
much time is needed to perform a certain amount of work, but rather how much work can be

2https://github.com/qyjohn/ScaleBench.
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done in a certain amount of time. For example, the I/O capacity of a system is represented by its
throughput in MB/s or GB/s. More complex system benchmark suites produce index scores, which
are also derived from how much work can be done in a certain amount of time. For the same
amount of work (W), we have

C (n) =
W

Tn

(3)

Therefore,

S (n) =
Cn

C1
(4)

and

E (n) =
Cn

n ·C1
(5)

In ScaleBench, we use CDI to quantitatively describe how possible it is for a horizontally scalable
application to encounter capacity degradation when running on a particular public cloud at scale.
This is achieved by measuring the node level capacity difference between a single-node system
(measured in the serial evaluation) and a multi-node system (measure in the parallel evaluations).
In the serial evaluation, the same test is performedn times in sequence, while each test is performed
on a different worker node (or a node pair when a particular test involves a pair of nodes). Each
test generates the same workload on the worker node. In the parallel evaluation, the same test
is performed on n nodes or node pairs in parallel. The worker nodes do not communicate with
each other in any way, and the workload on the worker nodes does not depend on each other in
any way. This simulates a perfectly horizontally scalable application with a combined workload,
which is n times as big as the workload in the serial evaluation. We define CDI(n) as the node level
capacity difference between the serial and parallel evaluations when there are n worker nodes or
node pairs in the parallel evaluation. More formally,

CDI (n) = 100 ×
Cs −Cp

Cs

(6)

Cs is the average node level capacity measured in the serial evaluation,

Cs = C̄1 (7)

Cp is the average node level capacity measured in the parallel evaluation,

Cp =
Cn

n
(8)

Therefore,

CDI (n) = 100 × (1 − En ) (9)

Throughout the rest of this article, we use a fixed n in our parallel evaluations and the notation
CDI actually refers to CDI(n). Considering the seemingly unlimited size of the resource pool and
the multi-tenant nature in public clouds, we can assume that the benchmark workload is only a
very small portion of the total workload on the cloud. If noisy-neighbor effect on the physical
host level (for example, virtual machines collocated on the same physical host) is the major source
of performance variation, the node level capacity from the serial and parallel evaluations would
be statistically similar, which is reflected in a small CDI. However, if in the parallel evaluation
the combined workload reaches any of the cloud-scale bottlenecks, the node level capacity would
become smaller due to resource contention, which is reflected in a relatively big CDI.

As such, CDI represents the average degree of capacity degradation on each worker node when
there aren nodes (or node pairs) in the worker fleet. For example, if in a particular test Cs is 100 and
Cp is 80, then CDI = 20 indicates each worker node loses 20% of its desired (or perceived) capacity
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in the parallel evaluation. When CDI is small, it is unlikely to encounter capacity degradation
when running horizontally scalable applications at scale. When CDI is big, it is likely to encounter
capacity degradation when running horizontally scalable applications at scale. As compared to
efficiency, CDI is more intuitive in describing capacity degradation in benchmark studies.

3 BENCHMARKS DESIGN

3.1 Overall System Performance

UnixBench 5.1.33 is used for benchmarking the overall system performance. UnixBench was
started at Monash University in 1983 as a simple benchmark application. Later on, it was updated
and revised by many people with new features and capabilities. UnixBench includes a number
of individual tests such as Dhrystone, Whetstone, execl() throughput, file copy, pipe throughput,
process creation, shell scripts, system call overhead, and graphical test. Each individual test was
designed to evaluate the performance of different components on a computer system. The system
benchmark index score reported by UnixBench reflects the overall performance of the computer
system, which can be impacted by individual components including CPU, memory, and disk I/O.

UnixBench produces two system benchmark index scores—a single-thread system benchmark
index score where the benchmark is performed in a single-thread fashion using a single CPU
core, and a multi-thread system benchmark index score where the benchmark is performed in a
multi-thread fashion using all available CPU cores on the system. In this article, we report the
multi-thread system benchmark index score as the test result.

3.2 Block Storage

In public clouds, block storage is usually implemented as a separate service, provided to the com-
pute service over the network. Certain public clouds have both volume-level throughput limits
and instance-level throughput limits. In our test, we use 4 x 500 GB block devices to form a RAID0
disk array on each virtual machine instance to achieve the maximum throughput.

IOzone 3.4714 is used for storage benchmark. IOzone evaluates file system capacity by gener-
ating a variety of file operations and reports the observed file I/O throughput (in MB/s). The test
job generates a sustained level of sequential write operations by writing to a single test file on the
RAID0 device in a single thread fashion. To account for the impact from memory and disk I/O buffer
cache, the size of the test file is 200 GB, which is significantly larger than the amount of memory
available on the worker node. The file system is Ext4 and the block size of each write operation
is 256 KB. We format the file system with “mkfs.ext4 -E lazy_itable_init=0,lazy_journal_init=0
/dev/md0” to avoid the impact of Ext4 lazy initialization.

3.3 Networking

We develop our own network benchmark application to measure the sustainable throughput be-
tween a pair of worker nodes. On each worker node, we install the Apache web server with a
100 MB test file for downloading. Each worker node runs a Java program that repeatedly down-
loads the test file from the other worker node with multiple threads. In a single test, the test file is
downloaded 3,200 times, resulting in 320 GB transmit/receive traffic on both nodes. Since the size
of the test file is significantly smaller than the amount of memory available on the worker node,
it is cached in memory when the first download completes so that there is no further disk I/O in
subsequent downloads. Based on the time needed to finish the downloads, we calculate and report
the average download throughput (in MB/s) observed on each node.

3https://github.com/kdlucas/byte-unixbench.
4http://www.iozone.org/.
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Fig. 3. The job definition to perform network benchmark between a pair of worker nodes 172.31.0.21 and

172.31.0.22.

Table 1. Worker Node Configurations

Instance Type vCPU Cores Memory (GB) Root Vol. (GB)
Cloud A c3.8xlarge 32 60 500
Cloud B ecs.c5.8xlarge 32 64 500
Cloud C s2.8xlarge.2 32 64 500
Cloud D s2.8xlarge.2 32 64 500

We use node-specific jobs in ScaleBench to automate the benchmark process. Figure 3 is an
example job definition to perform networking test on two nodes 172.31.0.21 and 172.31.0.22.

3.4 Object Storage

In public clouds, object storage is usually implemented as a separate service. On each worker
node, we run a Java program that repeatedly uploads a 100 MB test file to object storage, then
deletes the file from object storage. In a single test, the test file is uploaded 3,200 times, resulting
in 320 GB data transmission from the worker node to object storage, as well as 3,200 PutObject

and DeleteObject API calls. Similar to the networking test, the test file is cached in memory when
the first upload completes so that there is no further disk I/O in subsequent uploads. Based on the
time needed to finish the test, we calculate and report the average upload throughput (in MB/s)
observed on each node.

In public clouds, object storage is usually implemented with a distributed system in the back
end, utilizing a hash algorithm to map object keys to storage partitions. In large-scale testing,
improper naming for the object keys can cause the objects to be stored on only a few partitions in
the distributed system. This is commonly referred to as the “hot partition” problem. The result is
the over-utilization of the hot partitions, leading to performance degradation on the application
side. In our test we generate a new universally unique identifier (UUID) as the object key for each
upload, mitigating the above-mentioned “hot partition” problem.

4 RESULTS AND DISCUSSION

We performed our test on four selected public clouds—namely Cloud A, Cloud B, Cloud C, and
Cloud D—from February to October 2018. All worker nodes are virtual machines, not bare metal
servers. Table 1 shows the configurations for the worker nodes. The master node is a separate
virtual machine instance with the same configuration. On all public clouds, the worker nodes are

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: February 2020.
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Fig. 4. Multi-thread UnixBench index score.

launched into the same availability zone.5 The operating system is 64-bit Ubuntu 16.04.3 LTS. For
each benchmark, we set n = 20 in both the serial and parallel evaluations.6 In both evaluations,
we report the minimum, average, and maximum capacity observed, along with the population
standard deviation (Stdev.P).

With 20 worker nodes in the test fleet, both RabbitMQ and MySQL receive 20 requests per
second at maximum. This is a very small workload, as compared to the processing capacity of the
master node. On the worker nodes, we observe that (a) the average round-trip latency for requests
to RabbitMQ and MySQL is within 10 milliseconds, and (b) the test agent consumes less than 0.5%
CPU resources on a single vCPU core, with no disk I/O activity.

4.1 Overall System Performance

Figure 4 presents the multi-thread UnixBench system benchmark index scores. On Cloud A (Fig-
ure 4(a)), the average measurements from the serial and parallel evaluations are very similar, with
the CDI being 0.7%. On Cloud B (Figure 4(b)), there is some modest capacity degradation in the

5In public clouds, there are usually multiple availability zones in a region. If we are able to detect cloud-scale bottlenecks

on the availability zone level, it is reasonable to infer that the same can be detected on the region level by deploying worker

nodes into other availability zones.
6On AWS, the default EC2 on-demand instance limit is 20 in all regions. Customers can request limit increases when needed.

Other public clouds have similar default quotas and limit increase mechanisms. One of our research questions is whether

cloud-scale bottlenecks can be reached by an ordinary cloud user. As such, it is desired for the cloud-scale bottlenecks to

be detected with as little computing resource as possible. Therefore, we choose n = 20 in our benchmark tests. Evaluation

at a larger scale is done in the case study part of this article.
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parallel evaluation, with the CDI being 6%. On Cloud C (Figure 4(c)) and Cloud D (Figure 4(d)),
there are obvious capacity degradation in the parallel evaluations, with the CDI’s being 24% and
16%. For a horizontally scalable application, it is likely to encounter capacity degradation when
running on Cloud C and Cloud D at scale. We also notice that in the parallel evaluations on Cloud
C and Cloud D, the population standard deviation is high (>10%). This suggests that the worker
nodes demonstrate a high level of capacity variation in the parallel evaluation—their overall system
performance becomes less predictable.

For a virtual machine, CPU and memory resources are local resources on the underlying host
server. In public clouds, it is a common practice to use the same type of CPU and memory for
the same instance type. This is partially verified on all four public clouds by looking into the
CPU information (/proc/cpuinfo) on the virtual machines. Virtualization technology allows cloud
service providers to practice CPU over-commit (selling more virtual vCPU cores than the number
of physical CPU cores available) or memory over-commit (selling more memory than the amount
of physical memory available). In the serial evaluation, each test only utilizes 32 vCPU cores, which
is relatively small as compared to the advertised “unlimited” resource pool in public clouds. The
chance of the worker node being co-located with other instances—thus subjected to the impact
of CPU/memory over-commit—is relatively small. In the parallel evaluation, we utilize 640 vCPU
cores in parallel. For an established public cloud like AWS with a big resource pool, the chance of
worker node co-location is expected to be small. For an emerging public cloud with a relatively
small resource pool, the possibility of two or more worker nodes being co-located on the same
host server might be higher. When co-location occurs, the co-located worker nodes might suffer
from the impact of CPU/memory over-commit, leading to the observed capacity degradation. The
same applies to any mentioning of worker node co-location in the rest of this article.

However, CPU/memory over-commit is not the only potential reason for the capacity degrada-
tion observed on Cloud C and Cloud D. The index score reported by UnixBench is also influenced
by disk I/O. In the parallel evaluations, UnixBench is launched on all worker nodes at the same
time. If the cloud service provider does not practice CPU/memory over-commit, then disk I/O is
expected to start at approximately the same time on all worker nodes, resulting in a burst in the
combined pressure on block storage. As such, block storage can also be a potential reason for the
capacity degradation observed.

4.2 Block Storage

Figure 5 presents the write throughput on a RAID0 device using 4 x 500 GB block storage volumes.
For Cloud A (Figure 5(a)), the average measurements from the serial and parallel evaluations are
the same, with the CDI being 0%. For Cloud B (Figure 5(b)), there is modest capacity degradation in
the parallel evaluation, with the CDI being 5%. For Cloud C (Figure 5(c)) and Cloud D (Figure 5(d)),
there exists significant capacity degradation in the parallel evaluations, with the CDI’s being 47%
and 52%. For a horizontally scalable disk I/O intensive application, it is likely to encounter mod-
est capacity degradation when running at scale on Cloud B, and significant capacity degradation
when running at scale on Cloud C and Cloud D. Similar to the observations made in the overall sys-
tem performance benchmark, in this benchmark, the population standard deviation is quite high
(>10%) in the parallel evaluations on Cloud C and Cloud D. This suggests that the worker nodes
demonstrate a high level of capacity variation in the parallel evaluation—their disk I/O capacity
becomes less predictable.

There are three potential bottlenecks in block storage. The first potential bottleneck is the stor-
age bandwidth of the physical host. When two or more virtual machines are co-located on the same
physical host, improper Quality of Service (QoS) configurations might cause the virtual machines
to compete for storage bandwidth. The second potential bottleneck is the aggregated bandwidth
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Fig. 5. 4 x 500 GB RAID0 disk write throughput (MB/s).

between compute service and block storage. When the combined workload reaches the aggregated
bandwidth, higher throughput can not be achieved. In the parallel evaluation, the throughput on
some worker nodes is approximately 1/2 or 1/4 of the throughput in the serial evaluation. This
suggests that a single storage channel is then shared by 2 or 4 worker nodes. When a particular
storage channel is saturated, capacity degradation occurs on worker nodes sharing that storage
channel. The third potential bottleneck is the aggregated disk I/O capacity in the back end storage
pool. The combined throughput observed in the parallel evaluation is 10,200 MB/s on Cloud C and
8,200 MB/s on Cloud D. For a public cloud service provider, the block storage service is expected
to have much higher disk I/O capacity than these values. As such, in our benchmark, it is quite
unlikely that the aggregated disk I/O capacity becomes the bottleneck.

Since cloud-scale bottleneck is observed in block storage on Cloud C and Cloud D, the previously
observed capacity degradation (Figure 4(c) and (d)) in overall system performance is more likely
to be related to block storage instead of CPU/memory over-commit.

4.3 Networking

Figure 6 presents the private network throughput between worker node pairs. For Cloud A (Fig-
ure 6(a)), Cloud B (Figure 6(b)), and Cloud C (Figure 6(c)), the average measurements in the serial
and parallel evaluations are similar, with the CDI’s being −1.5%, −0.2%, and 1%, respectively. For
Cloud D (Figure 6(d)), there exists significant capacity degradation in the parallel evaluations, with
the CDI being 14%. For a horizontally scalable network I/O intensive application, it is likely to en-
counter significant capacity degradation when running at scale on Cloud D.

Contrary to the observations made in overall system performance and block storage, in this
benchmark, the population standard deviation is approximately the same in the serial and parallel

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: February 2020.
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Fig. 6. Private network throughput between worker node pairs (MB/s).

evaluations on Cloud D, although significant capacity degradation is also observed. This suggests
that on Cloud D, when the cloud-scale bottleneck on networking is reached, all worker nodes
suffer from the same level of capacity lost. This also suggests that on Cloud D, the application
network and the storage network might have different architectures, leading to the difference in
the capacity degradation behavior.

There are two potential bottlenecks in networking. The first potential bottleneck is the net-
work bandwidth of the physical host. When two ore more virtual machines are co-located on the
same physical host, improper QoS configurations might cause the virtual machines to compete
for network bandwidth, resulting in noisy-neighbor effect. The second potential bottleneck is the
up-link bandwidth of the aggregate switches in a tree topology, where there is a core-pod-rack
hierarchy in the data center. The network cards on the physical hosts are connected to the top-
of-rack switches, with up-links to the aggregate switches in the same pod, then with up-links to
the core switch in the data center. For a pair of virtual machines on two different racks, the traffic
traverses through the aggregate switches. For a pair of virtual machines in two different pods, the
traffic traverses through the aggregate switches and the core switch. Most switches are designed
for over-subscription, where the combined downstream bandwidth is greater than the combined
up-link bandwidth. Capacity degradation arises when the cross-rack/pod traffic demands more
throughput than the up-link bandwidth.

4.4 Object Storage

Figure 7 presents the object storage upload throughput. For Cloud A (Figure 7(a)), the results ob-
tained from the serial and parallel evaluations are similar, with the CDI being 2%. For Cloud B
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Fig. 7. Object storage upload throughput (MB/s).

(Figure 7(b)), Cloud C (Figure 7(c)), and Cloud D (Figure 7(d)), there exists significant capacity
degradation in the parallel evaluations, with the CDI’s being 90%, 71%, and 63%, respectively. For
a horizontally scalable object storage I/O intensive application, it is likely to encounter significant
capacity degradation when running on Cloud B, Cloud C, and Cloud D at scale.

Similar to the observations made in the networking benchmark, in this benchmark, the popula-
tion standard deviation is approximately the same in the serial and parallel evaluations on Cloud
B, Cloud C, and Cloud D, where significant capacity degradation is observed. Since the object stor-
age benchmark generates a significant level of sustained pressure on networking, the same factor
might be contributing to the observed capacity degradation in networking and object storage.

There are several potential bottlenecks in the benchmark for object storage. The first potential
bottleneck is networking within the virtual private cloud (VPC), which has been discussed in the
networking benchmark. For Cloud A, Cloud B, and Cloud C, no obvious capacity degradation is
observed in the networking benchmark. For Cloud D, in the serial evaluations, the object storage
upload throughput observed (765 MB/s) is bigger than the throughput observed in the networking
benchmark (565 MB/s). In the networking test, the workload is bi-directional—a pair of nodes
download 320 GB data from each other, producing 320 GB in transmit and 320 GB in receive on both
nodes. In the object storage benchmark, the workload is uni-directional with 320 GB in transmit on
the worker node. We perform a set of uni-directional networking test with one node downloading
320 GB data from the other node, producing 320 GB in transmit on one node and 320 GB in
receive on the other node. In the uni-directional networking test, the observed throughput is 800
MB/s, which is greater than the throughput observed in the bi-directional networking benchmark
and the object storage benchmark. In the parallel evaluations, the average object storage upload
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Fig. 8. Capacity degradation index (CDI).

throughput observed (282 MB/s) is smaller than the average throughput observed in the net-
working benchmark (486 MB/s). Therefore, networking within the VPC does not seem to be the
bottleneck here.

The second potential bottleneck is the aggregated bandwidth between compute service and
object storage, which might be an unpublished user quota. For Cloud B, the combined throughput
in the parallel evaluation is approximately 1250 MB/s (10 Gbps). It is unlikely that public clouds
still use switches with a 10 Gbps up-link. As such, we tend to believe this is an unpublished user
quota. For Cloud C, the combined throughput in the parallel evaluation is approximately 3125 MB/s
(25 Gbps), which is a well-known throughput used in modern switches. It is possible that there
is a 25 Gbps data link between compute service and object storage. For Cloud D, the combined
throughput in the parallel evaluation is approximately 5640 MB/s (45 Gbps), which is in between
the well-known switch throughput 40 Gbps and 50 Gbps. It is unlikely that a networking limit is
reached in the parallel evaluation.

The third potential bottleneck is the API rate limit of the object storage service. Since we use
a test file with a fixed size, the combined throughput might be the API rate limit times the fixed
size. We perform several additional tests on Cloud B, Cloud C, and Cloud D with smaller test files.
On all three of them, we are able to make more API calls and observe approximately the same
combined throughput. This indicates that API rate limit is not the bottleneck.

The four potential bottleneck is the processing capacity on the object storage service side. For
Cloud D, the combined throughput observed is 5640 MB/s. This is not a significant value as com-
pared to the disk I/O capacity of modern storage systems. As such, we tend to think that the
underlying storage component is capable of providing sufficient disk I/O capacity, but the object
storage service as a system is not capable of taking full advantage of the disk I/O capacity available.

4.5 Capacity Degradation Index

Figure 8 presents the CDI’s obtained from all benchmarks, along with the raw data in Table 2.
In some benchmarks, the CDI’s are negative, suggesting capacity gain in the parallel evaluations.
Such capacity gain is very small and can be considered as within the range of measurement errors.
On Cloud A, no obvious capacity degradation is observed in any benchmark. On Cloud B, signifi-
cant capacity degradation is observed in object storage. On Cloud C, modest capacity degradation
is observed in overall system performance, significant capacity degradation is observed in block
storage and object storage. On Cloud D, modest capacity degradation is observed in overall sys-
tem performance and networking; significant capacity degradation is observed in block storage
and object storage. This confirms that various cloud-scale bottlenecks exist in public clouds. Such
bottlenecks can be easily detected by ScaleBench with as little as 20 worker nodes.
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Table 2. Summary of Benchmark Results

Cloud A Cloud B Cloud C Cloud D
Overall System Performance (UnixBench Index Score)
Ms 7,543 9,052 6,819 9,237
Mp 7,490 8,554 5,157 7,775
CDI(20) 0.7 6 24 16
20 x Mp 149,800 171,080 103,140 155,500
Block Storage Throughput (MB/s)
Ms 660 721 958 866
Mp 660 684 508 413
CDI(20) 0 5 47 52
20 x Mp 13,200 13,680 10160 8,260
Private Network Throughput (MB/s)
Ms 1,147 1,234 847 564
Mp 1,165 1,237 835 486
CDI(20) −1.5 −0.2 1 14
20 x Mp 23,300 24,740 16,700 9,720
Object Storage Throughput (MB/s)
Ms 578 644 536 766
Mp 568 62 156 282
CDI(20) 2 90 71 63
20 x Mp 11,360 1,240 3,120 5,640

Ms represents the measurement from the serial evaluation. Mp repre-

sents the measurement from the parallel evaluation.

The observed cloud-scale bottlenecks might be the result of architecture design, capacity lim-
its in the resource pool, or unpublished user-level quota limits. In our studies, the selected public
clouds are treated as black boxes. When attempting to understand these bottlenecks, we iden-
tify critical points in the data path and perform qualitative analysis around them. However, the
discussion on the root cause of the observed bottlenecks is beyond the scope of this article. It
should also be noted that such observations can change when the public cloud service providers
upgrade their infrastructure or modify their QoS configurations. (On Cloud D, the results obtained
in October 2018 are significantly better than the results obtained in February 2018. With the un-
derstanding that there might have been a significant upgrade in the service, we selectively report
the better/later results in this article.)

When a very small CDI is observed in a particular benchmark, it does not mean that cloud-scale
bottleneck does not exist. But rather, the proper interpretation is that cloud-scale bottleneck is
not observed when there are only n worker nodes in the parallel evaluation. For example, if in a
particular compute resource pool (a rack or a cluster) there exists a shared channel to block storage
with a 20 Gbps bandwidth and each virtual machine is subjected to a 1 Gbps throughput limit, then
capacity degradation will not occur with 20 worker nodes but will start to occur when there are
21 or more worker nodes in the parallel evaluation.

It should be noted that we use some relatively big instance types (8xlarge) in our benchmark
study, allowing us to observe significant performance degradation with as little as 20 worker nodes.
As pointed out by Cortez et al. [7], small-size instance types are more commonly used in public
clouds. With AWS, smaller instance types usually have lower network performance and storage
bandwidth. Although not exactly the same, other public clouds have similar quality of service
(QoS) measurements, allowing bigger instance types to consume more computing resources when
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needed. As such, if the end user chooses to use small-size instance types in the benchmark, it might
require a lot more worker nodes to arrive at similar observations as reported in this article.

5 CASE STUDY

The CDI data presented in Section 4.5 demonstrates the existence of cloud-scale bottlenecks in
public clouds. In theory, it is possible for the horizontal scaling technique to fail when an ap-
plication demands more resource than any of the cloud-scale bottlenecks. However, our second
research question remains—can such cloud-scale bottlenecks actually be reached by an ordinary
cloud user to the point that the horizontal scaling technique stops working? In this section, we
attempt to answer this question with a case study.

As shown in Figure 8 and Table 2, the CDI’s on overall system performance and networking
are relatively lower than the CDI’s on disk I/O and object storage. To demonstrate the impact of
cloud-scale bottlenecks with as little computing resources as possible, it is desired that the demo
application has an intensive demand on either disk I/O or object storage.

There exist three major types of horizontally scalable workloads on public clouds, namely multi-
tier web service, batch processing, and big data analysis using Apache Hadoop or Apache Spark. In
general, multi-tier web service workload presents more pressure on overall system performance
or networking instead of disk I/O or object storage, making it an unfavorable use case for this
study. The resource consumption of a batch processing system depends on the workload inside a
batch. If the workload inside a batch is either disk I/O intensive or object storage intensive, then
it can become a good use case for this study. The same applies to big data analysis workload—if
the analysis is either disk I/O intensive or object storage intensive, then it can become a good use
case for this study.

In this section, we choose to use a batch processing system for video transcoding as the use
case. Video transcoding workload is well-known for being CPU intensive and disk I/O intensive at
the same time. When the input source and output destination are on object storage, it can present
an intensive pressure on object storage as well. With the understanding that video transcoding
might not be a representative workload in public clouds, it has the potential of reaching some of
the cloud-scale bottlenecks with as little computing resource as possible.

5.1 Video Transcoding Application

Video transcoding is a common use case for websites providing video sharing service. When an
end user uploads a video for sharing, the uploaded video comes with a particular file format, reso-
lution, and bitrate. To provide the best user experience for the viewers, the service provider often
needs to convert the same video into different file format, resolution, and bitrate so that it can be
delivered to different devices with different runtime environments over different network connec-
tivity conditions.

Figure 9 presents the architecture of the video transcoding system used by a video sharing web-
site [23]. When the end user uploads a video for sharing, the uploaded video is stored in a bucket
on object storage. The upload API call also triggers an event notification action, which publishes a
job to the message queue. The video transcoding fleet includes a group of worker nodes, which poll
the corresponding message queue for transcoding jobs to execute. As such, the video transcoding
system is a horizontally scalable batch processing system with a producer/consumer architecture.
In this case study, we use a 5.26 MB video in MP4 format as the user upload, simulating a short
video with a smart phone for sharing. We pre-stage 100,000 copies of the same video to object
storage, with a UUID as the object key. On each worker node, the video transcoding application
launches multiple threads, with the number of threads equal to the number of vCPU cores on the
worker node. Each thread performs the following tasks: (a) receives one job from the message
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Fig. 9. The architecture of the video transcoding system.

queue, (b) downloads the corresponding video from object storage to local disk, (c) uses FFmpeg7

to convert the video from MP4 format to WMV format (the output size is 5.76 MB), (d) uploads
the output file from local disk to object storage, and (e) deletes both the MP4 and WMV files from
local disk. This process continues until all jobs in the message queue have been consumed. In a
production environment, the video transcoding fleet is deployed in an auto-scaling group, which
changes its size based on the number of remaining jobs (queue length) in the message queue. In
our evaluation, we manually specify the desired size of the worker fleet, instructing auto scaling to
launch or terminate worker nodes to arrive at the desired number of worker nodes in the worker
fleet for each test.

Video transcoding is a compute-intensive workload. Working with local files produces pressure
on disk I/O. Using object storage as the initial input and final output produces pressure on both
object storage and networking. In our experiments, we change the number of worker nodes and
record the rate of transcoding (the number of videos transcoded per second) of the worker fleet as
the processing capacity. As the number of worker nodes increases, the rate of video processing is
expected to increase accordingly. However, as the scale of the worker fleet grows, certain cloud-
scale bottlenecks might be reached. If this happens, the rate of transcoding would stop growing at
some point, regardless of the increase in the number of worker nodes.

5.2 Resource Consumption Pattern

Figure 10 shows the resource consumption pattern of the video transcoding application running
on a single worker node on Cloud A over a 50-second period. On Cloud B, Cloud C, and Cloud D,
the application demonstrates a similar resource consumption pattern. As shown in Figure 10(a),
the application demands almost 100% CPU most of the time (user), with only occasional resource
under-utilization (idle). Disk I/O (Figure 10(b)) and network I/O (Figure 10(c)) occur in a burst
pattern. (We omit disk reads from Figure 10(b) because it is very low.) The peaks in disk I/O relate
well with the appearance in CPU under-utilization. This is because the 32 worker threads are
working on different copies of the same video. They download the videos at the same time, spend
the same amount of time on transcoding, and upload the output to object storage at the same
time. The peaks in disk and network I/O are well below the corresponding single-node capacities
observed in Sections 4.2 and 4.3. On average, the application demands 15–20 MB/s throughput in
disk writes, network receive, and transmit. Out of the 60 GB memory available on the worker node,

7https://www.ffmpeg.org.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 5, No. 1, Article 6. Publication date: February 2020.

https://www.ffmpeg.org


The Limit of Horizontal Scaling in Public Clouds 6:17

Fig. 10. Resource consumption pattern of the video transcoding application running on a single worker node.

Fig. 11. The rate of transcoding vs. worker nodes.

around 55 GB is free. The video transcoding application can be considered as CPU-intensive, with
relatively low demand on memory, disk, and network I/O. This makes it an ideal use case for the
horizontal scaling technique.

5.3 Large-Scale Evaluation Results

Figure 11 presents the rate of video transcoding obtained from our large-scale experiments. On
Cloud A, Cloud B, and Cloud D, the worker fleet has up to 100 worker nodes, with a maximum
number of 3200 vCPU cores. On Cloud C, the test fleet has up to 25 worker nodes due to quota
limits from the cloud service provider.
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On Cloud A, there is a linear relationship between the rate of transcoding and the number of
worker nodes, with no obvious signs of capacity degradation. This is expected because no cloud-
scale bottleneck is detected on Cloud A in any benchmarks. On Cloud B, the linear relationship
is observed with up to 65 worker nodes, beyond which no further capacity growth is observed.
The maximum rate of transcoding is 227 videos per second, which demands 1203 MB/s in net-
work throughput. This is very close to the object storage throughput limit (1250 MB/s) detected
in Section 3.4. In this test, when the combined workload on object storage exceeds the cloud-scale
bottleneck, further capacity can not be achieved by adding nodes into the worker fleet.

On Cloud C, such linear relationship is observed and maintained throughout our tests. Despite
the fact that cloud-scale bottlenecks are identified in block storage, networking, and object storage
in the benchmarks, none of these bottlenecks are reached in this case study because the small size
of the worker fleet. With the previously-detected 3125 MB/s throughput limit in object storage,
capacity degradation might not occur until the rate of transcoding reaches 590 videos per second.
On a single node, the rate of transcoding is approximately 4.8 videos per second. It would require
approximately 125 nodes in the worker fleet to reach the throughput limit in object storage.

On Cloud D, such linear relationship is observed and maintained throughout our tests. Despite
the fact that cloud-scale bottlenecks have been identified in block storage, networking, and object
storage in the benchmarks, none of these bottlenecks are reached in this evaluation. With the
previously-detected 5640 MB/s throughput limit in object storage, capacity degradation might not
occur until the rate of video transcoding reaches 1,065 videos per second. On a single node, the
rate of transcoding is approximately 2.5 videos per second. It would require approximately 430
nodes in the worker fleet to reach the throughput limit in object storage.

5.4 General Use Cases

With the understanding that cloud-scale bottlenecks might prevent horizontally scalable applica-
tions from achieving the desired level of capacity in public clouds, we recommend the following
procedure to make the proper design decisions:

• Use the serial evaluation technique to observe the resource consumption pattern of the ap-
plication running on a single node. This includes a variety of capacity metrics such as disk
I/O (input/output operations per second (IOPS) and throughput), network I/O (packets per
second and throughput), and object storage (number of API calls per second and through-
put). This becomes the desired single-node capacity C1 for each capacity metric on a single
node. The standard deviation observed in the serial evaluation is the expected level of ca-
pacity variation of the nodes. On average, a single node is capable of processing n requests
(jobs, tasks) per second. If your goal is to process m requests per second, then you will need
a total number of t = m / n nodes in the worker fleet.

• Use the parallel evaluation technique to measure the various node level capacity metrics of
a test fleet with n worker nodes. Calculate the CDI’s for each capacity metric. The larger
the CDI is, the more possible it is for the horizontal scaling technique to fail. Also, calculate
the combined capacity for each capacity metrics, denoted by Cn.

• For a particular performance metric, if Cn < t * C1, then there exists a cloud-scale bottleneck
that prevents the worker fleet from achieving the desired single-node capacity C1 for all of
the t worker nodes. In this case, more processing capacity can not be achieved by adding
nodes into the worker fleet and the horizontal scaling technique fails.

Public cloud service providers can also take advantage of ScaleBench to quickly identify cloud-
scale bottlenecks in their services.
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6 RELATED WORK

The problem of analyzing the performance of parallel systems has been well addressed in existing
literature. This leads to speedup and efficiency, two performance metrics commonly used to eval-
uate the performance of parallel systems. Amdahl [3] pointed out that speedup is limited by the
time needed for the serial fraction of the problem. Kumar et al. [24] and Heidelberger et al. [14]
used a queueing technique to model the behavior of parallel systems. Gustafson [12] pointed out
that any sufficiently large problem can be efficiently parallelized with a speedup. Eager et al. [11]
pointed out that the tradeoff between speedup and efficiency can be determined by the average
parallelism of the software system.

Scalability has been vigorously studied in the recent past, with an extensive amount of literature
on (a) traditional computing systems such as multiprocessor systems and parallel computers [5,
15, 30, 37, 42], and (b) computing resources on public clouds [2, 10, 29, 31, 32, 34, 35, 43, 44, 47, 48].
With the assumption that there is a certain amount of computing resource (CPU, memory, disk
I/O, network I/O, etc.) associated with a processor or a worker node, the primary focus of these
research works is how applications can take full advantage of the computing resources offered by
either multiple processors (vertical scaling) [5, 30, 42] or multiple nodes (horizontal scaling) [2, 25,
46] to achieve greater processing capacity.

Horizontal scaling has become the main technique to achieve greater processing capacity in
public clouds [32, 44]. Despite the various algorithms proposed to trigger scaling actions [10, 31,
34, 35, 43, 47, 48], the underlying assumption remains the same—there is a certain amount of
computing resource (CPU, memory, disk I/O, network I/O, etc.) associated with a compute instance,
and a linear relationship between the amount of computing resource and the number of nodes in
the worker fleet. (Whether or not the application can take full advantage of the computing resource
available is another question.) This leads to the expectation that for a perfectly horizontally scalable
application, its processing capacity can grow indefinitely as long as new worker nodes can be
obtained from the public cloud. For horizontally scalable applications, it has been reported that
their performance grows with the addition of workers nodes, although there might not be a linear
relationship between performance and the number of nodes [36, 49]. However, it has not been
reported that the performance of a horizontal scalable application stops growing with the addition
of worker nodes that we study in this article.

The multi-tenant nature and the resulting “noisy-neighbor effect” of public clouds is well known
to researchers. Numerous efforts have been carried out to understand the performance variation in
public clouds. The majority of these studies were performed on Amazon EC2 [1, 4, 9, 16, 18, 38], but
other public clouds are also covered extensively [13, 17, 19, 21, 26, 28, 33]. Most of these benchmark
efforts are application-specific, with a heavy focus on high-performance computing, online trans-
actional processing (OLTP) workload, and MapReduce workload. Varadarajan et al. [45] studied
the possibility of virtual machine co-location on Amazon EC2, Google GCE, and Microsoft Azure.
The authors demonstrate that the chances of virtual machine co-location are far higher than ex-
pected, even on public clouds that have massive datacenters with very large resource pools.

Benchmarking is usually a labor-intensive and error-prone process. Various benchmark tools
have been developed to make the benchmark process easier. Li et al. [27] developed CloudCmp to
compare both the performance and cost of cloud providers, using benchmark results obtained from
compute service, persistent storage, and networking. Marcio et al. [41] developed CloudBench to
automate benchmark tasks. In CloudBench, benchmarks were defined as high-level experiment
plans, with workload templates in the medium-level and shell scripts in the low-level. This al-
lowed CloudBench to execute complex and dynamic benchmarks with horizontal scaling. Cunha
et al. [8] developed Cloud Crawler with a domain-specific language to describe the test scenario. A
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Java-based execution engine was used to configure the test environment, execute the tests, and
collect test results. Jayasinghe et al. [20] developed Expertus using secure shell and secure copy
(SSH/SCP) techniques, which were capable of running the same set of jobs with the same runtime
parameters on multiple nodes in parallel. Scheuner et al. [39, 40] developed Cloud WorkBench
based on the notion of infrastructure-as-code. Cloud WorkBench provided support for the whole
benchmark life cycle including test definition, resource provisioning and configuration, test exe-
cution, data collection, and data visualization.

All of the previous-mentioned literature adopted the performance variation approach, with the
implicit assumption that more computing resource can “always” be obtained from the seemingly
unlimited resource pool offered by the public cloud service provider. Apart from the implicit aware-
ness that (a) bottlenecks exist in all systems including public clouds, and (b) the horizontal scaling
technique can fail at some point, there exists no quantitative study on the limit of horizontal scaling
in public clouds.

7 CONCLUSION

In this article, we have studied the limit of horizontal scaling in public clouds. We design and imple-
ment ScaleBench that utilizes a combination of serial and parallel evaluations to detect cloud-scale
bottlenecks. We propose a CDI to quantify how likely it is for a horizontally scalable application
to encounter capacity degradation when running on a public cloud at scale. We observe signifi-
cant capacity degradation on three out of the four public clouds being tested. This confirms our
hypothesis that there exists various cloud-scale bottlenecks in public clouds. Further, such bottle-
necks can be easily detected by ScaleBench with as little as 20 instances. We perform large-scale
experiments with a real-life video transcoding application on worker fleets with up to 3200 vCPU
cores. We demonstrate that when the above-mentioned bottleneck is reached, the capacity of the
application stops growing regardless of the growth in the number of nodes. We also demonstrate
how to predict when the horizontal scaling technique can fail, based on the cloud-scale bottlenecks
detected by ScaleBench. This allows public cloud users to make proper design decisions as early
as possible.
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